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Abstract  

The current study aimed to determine the in vitro equivalence of generic paracetamol tablets applying UV-

spectroscopic analysis and biowaiver settings. In-vitro equivalency investigations, including weight uniformity, 

disintegration, dissolution, hardness, and friability assays, and UV-spectroscopic analysis, were utilized to determine 

the compliance of various paracetamol brands to the innovator standard. The tablets' hardness ranged from 6.7 ± 

0.42 to 9.5 ± 0.33, with P1 and P5 having the highest and lowest values, respectively. The percentage friability 

ranged from 0.0294 ± 0.003 to 0.1696 ± 0.01, with P3 ranking higher than P2, P4, P5, and P1. The brands fell well 

below the USP-specified limit of < 1.0%. The disintegration time ranged between 6.4 and 9.1 minutes. Within 30 

minutes, the dissolution profile showed percentage releases ranging from 79.89 to 87.88%. Except for P2, all brands 

met the BP criterion for paracetamol, with quantities ranging from 87.17 ± 0.32 to 100.44 ± 0.17%. The innovator 

brand P5 contained 96.94 ± 0.33% of the label claim of 500 mg/tablet, while generics ranged from 87.17 ± 0.32 to 

100.44 ± 0.17%. There was no significant difference between label claims on brands of paracetamol and computed 

assay values between the P5 (innovator) and P1, P2, P3, and P4 (generics) in the recovery assay. The RSD and SEM 

values ranged from 0.17 to 0.37, and 0.49 to 0.96. All of the paracetamol brands examined in this study passed the 

disintegration test requirements established by the USP and BP, and the procedure can be utilized for routine quality 

control of solid dose medications. 
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1. Introduction 

Paracetamol is a non-opioid analgesic and antipyretic used to treat fever, mild to moderate pain, and post-surgical 

discomfort [1-3, 4]. Combining paracetamol with other opioids or non-opioid analgesic medications can augment its 

pharmacological effects [5]. Paracetamol provides only modest and clinically inconsequential pain relief in 

osteoarthritis, and there is insufficient evidence to support its use in cancer, low back pain, or neuropathic pain [6-

10]. Paracetamol is a safe alternative for patients who cannot tolerate the stomach-irritating side effects of 

nonsteroidal anti-inflammatory drugs (NSAIDs) [11-13]. Chronic paracetamol use can lead to low hemoglobin 

levels, indicating inaccurate liver function tests and gastrointestinal hemorrhage [14]. Excessive doses can cause 

toxicity, including liver failure and paracetamol poisoning. Paracetamol poisoning is a leading cause of acute liver 

failure in several Western nations [15–17]. It can also result in deadly skin allergies such as toxic epidermal 

necrolysis and Stevens-Johnson syndrome [18]. 
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Figure 1: Structure of Paracetamol (para-acetaminophen). 

 

Paracetamol appears to exert therapeutic effects by suppressing COX (cyclooxygenase) enzymes and the activity of 

its metabolite, N-arachidonoylphenolamine (AM404) [19]. When arachidonic acid and peroxide concentrations are 

low, paracetamol works on cyclooxygenase enzymes in the same way that selective inhibitors of COX-2 do. It is 

mostly metabolized by the liver by glucuronidation and sulfation, with the resulting metabolites eliminated in the 

urine. Approximately 2-5% of the medication is eliminated unaltered in urine [22]. UGT1A1 and UGT1A6 

glucuronidate paracetamol, account for 50-70% of its metabolism. The SULT1A1, SULT1A3, and SULT1E1 

enzymes convert around 25-35% to sulfate [23]. N-acetyl-p-benzoquinone imine (NAPQI) is a hazardous metabolite 

that results from the cytochrome P450 (CYP2E1) enzymes pathway (5-15%). At average quantities, glutathione can 

easily metabolize NAPQI, which causes paracetamol-induced liver injury. The non-toxic conjugate APAP-GSH gets 

absorbed in the bile and transformed into mercapturic and cysteine conjugates, which are eliminated in the urine 

[23]. The last process makes use of AM404, which is abundant in animal brains and cerebrospinal fluids of 

paracetamol users. Fatty acid amide hydrolase in the brain transforms 4-aminophenol, another paracetamol 

metabolite, into AM404 [19, 24]. The cannabinoid system and TRPV1 are critical to paracetamol's analgesic 

actions, because AM404 stimulates CB1 and CB2 (cannabinoid) receptors, inhibits the endocannabinoid transporter, 

and activates TRPV1 [19, 25]. 

When given orally, it is rapidly absorbed in the small intestinal tract but poorly in the stomach. The rate of 

absorption is controlled by stomach emptying time, which is typically slowed after eating. The highest plasma levels 

of paracetamol occurred 20 minutes after fasting and 90 minutes after eating. The bioavailability of paracetamol 

rises with dosage, from 63% at 500 mg to 89% at 1000 mg [22]. The elimination half-life from plasma is between 

1.9 and 2.5 hours, with a distribution volume of about 50 L [20]. Protein binding is low, except in cases of overdose, 

where it might range from 15% to 21%. Following a normal dose, serum concentrations decrease below 200 μmol/L 

(30 μg/mL). After 4 hours, the drug level often declines to 66 μmol/L (10 μg/mL) [22, 26]. Paracetamol is harmful 

to a variety of species [27–29]. Paracetamol is sold as a generic medication under several brand names, including 

Tylenol and Panadol [30]. In 2021, it was one of the most commonly prescribed medications in the United States, 

with over 5 million prescriptions [31]. The growing quantity of generic pharmaceuticals in the local pharmaceutical 

market makes it increasingly difficult for patients and physicians to choose the optimal drug [32]. As a result, there 

is a need to create simple, brief, and low-cost procedures for routinely assessing the in-vitro bioequivalence of 

medications generally available on the drug market [33-38]. The current study intends to examine the in vitro 

equivalency of generic paracetamol tablets using UV-spectroscopy and under biowaiver conditions. 

 

2. Materials and Methods 

Materials 

Reagents and Equipment 

All the chemicals used were of analytical grade. Pure paracetamol powder (99.88%, secondary standard (donated by 

Primex Nigeria Ltd., Ikeja, Lagos), Sodium hydroxide pellet manufactured by Lobal Chemie Lab reagents Mumbai 

400005 India. Hydrochloric acid (37%) manufactured by Riedel-DeHaan Sigma-Aldris chemical Germany, 

potassium dihydrogen orthophosphate anhydrous 98% manufactured by Loba Chemie PVT LMT, Disodium 

hydrogen orthophosphate manufactured by J.T Baker USA. All reagents were prepared using distilled water. 

Spectrumlab 752pro UV-VIS spectrophotometer, analytical weighing balance, spatula, refrigerator, mortar and 

pestle, test tube, Monsanto hardness tester, friabilator (Erweka friabilator), separating funnel, dissolution tester. Five 
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brands of Paracetamol coded - P1, P2, P3, P4, and P5 (innovator) were purchased from KETO DEVINE Pharmacy, 

Amassoma, Bayelsa state. Their brand names, manufacturing dates, expiry dates, batch numbers, NAFDAC 

numbers, and strength were documented. 

Methods 

Table 1: In vitro Equivalence Study 

Test Methodology 

Weight 

Uniformity Test 

Twenty (20) tablets of various brands of paracetamol were weighed separately using an 

analytical balance (Ohaus Adventure, USA), and the weights were recorded. The average weight 

and variation were also calculated [39]. 

Hardness Test 

Ten (10) tablets were taken from each batch. The tablet was held within a fixed and movable 

jaw, and the indicator's reading was adjusted to 0. The force exerted on the tablet's edge was 

steadily increased by turning the screw knob forward until the tablet broke. The reading was 

taken from the scale and represents the pressure required in kg/m2 to shatter the tablet [39].  

Friability test  

Ten tablets of each brand were weighed and abraded individually with a friabilator (ERWEKA, 

Germany). Following 100 spins, the tablets were weighed. The weight loss showed friability, 

which was expressed in percentage. The percentage friability should not exceed 1% (w/w) [40]. 

The friability was estimated by measuring the weight difference using the equation below. 

Disintegration 

test 

The disintegration study is critical for evaluating medication release. A disintegration test is used 

to determine how long it takes for tablets or capsules to disintegrate entirely. Previously, a 

disintegration test was used to determine the homogeneity of compression characteristics. We 

now favor this test for optimizing compression qualities. If disintegration time is not uniform, 

there will be a lack of batch homogeneity and consistency [41]. 

 

Determination of maximum wavelength and calibration curve in 0.1M NaOH 

To dissolve the powder, 10 mL of 0.1 M NaOH solution was poured into a 100 mL volumetric flask containing 100 

mg of paracetamol standard. The 0.1M NaOH solution was then marked. To obtain a concentration of 10 μgmL-1, an 

aliquot of 0.1mL of the solution was transferred to a 10 mL-1 volumetric flask and filled to the mark with 0.1M 

NaOH. This was subsequently scanned in the UV range (200-380 nm). The wavelength with the highest absorption 

was designated as the λmax. Concentrations of 2, 4, 6, 8, and 10 ug mL-1 were obtained from a stock solution of 1000 

μg/mL. The absorbance associated with these amounts was determined at the peak wavelength of the resulting 

spectrum. Absorbance results were utilized to create a calibration curve for calculating the amount of medication in 

the formulations. 

 

Determination of maximum wavelength and calibration curve in 0.1M HCl 

To dissolve the powder, 10 mL of 0.1 M HCl solution was poured into a 100 mL volumetric flask containing 100 

mg paracetamol standard. The 0.1M HCl solution was then marked. To obtain a concentration of 10 μgmL-1, an 

aliquot of 0.1mL of the solution was transferred to a 10 mL-1 volumetric flask and filled to the mark with 0.1M HCl. 

This was then scanned in the UV range (200-380 nm). The wavelength with the highest absorption was designated 

as the λmax. Concentrations of 2, 4, 6, 8, and 10 ug/mL were generated using a stock solution of 1000 μg/mL. The 

absorbance of these concentrations was measured at the peak wavelength of the produced spectrum. Absorbance 

results were utilized to create a calibration curve for measuring the medication released during the dissolving test 
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Dissolution test and drug release  

Dilute HCl (0.1M HCl): To make 0.1M HCl, transfer 8.5 ml concentrated HCl to a 1000 ml volumetric flask holding 

a tiny amount of water, then add more distilled water to fill the flask to 1000 ml. The dissolution test was performed 

using the USP Basket method in six replicates for each brand [39]. The dissolution medium was 900 ml of 0.1M 

HCl maintained at 37 ± 0.5 ℃. In all tests, 5 mL of dissolving sample was taken at intervals of 0, 5, 10, 15, 30, 45, 

and 60 minutes and replaced with an equal volume to keep the sink condition. UV spectrophotometry was used to 

analyze samples after they had been filtered and diluted with the dissolving liquid. The analyte concentration in each 

aliquot was calculated from a calibration curve [39]. 

 

Application of the method to formulated drugs  

Paracetamol (10 tablets) was crushed into powder, and an equivalent of 500 mg was weighed into a 100 mL 

volumetric flask, gently agitated with 30 mL of 0.1M NaOH for 3-5 minutes, and filled to the mark with 0.1M 

NaOH. After filtering, discard the first 5 mL of the filtrate and transfer aliquots of 100, 200, and 300 µL to a 100 mL 

volumetric flask. Dilute to mark with 0.1M NaOH (representing 5, 10, and 15 µg mL-1). The absorbance of the final 

solution was measured at 257 nm. The method was repeated for each brand (Innovator and generics), and the 

percentage content was determined. 

 

Dissolution profile comparison and bioequivalence of generics to innovator brand 

The US FDA performance validation test requirements [41] were used to compare the dissolving profiles of 

innovator and generic pharmaceuticals, together with the USP and BP specified limit of at least 80% of the 

medication discharged within 30 minutes. Furthermore, the independent model technique of difference factor (f1) 

and similarity factor (f2) was used to examine the dissolution profiles of the generics in comparison to the innovator 

brand using all-time amplitudes. The FDA and the European Agency for the Evaluation of Medicinal Products 

(EMEA), through the Committee for Proprietary Medicinal Products (CPMP), have accepted the similarity factor f2 

as a criterion for comparing the similarity of two or more dissolution profiles [42]. The use of kinetics - a 

comparative-dependent model for bioequivalent studies, assuming a first-order kinetic release of active was also 

adopted. 

   (1) 

 (2) 

    (3) 

 

Data analysis 

The weight uniformity was analyzed using simple statistics, while dissolution profiles of the generics and innovator 

were done graphically and by calculation using the independent and dependent models. The difference factor (f1), 

similarity factor (f2), and kinetic drug release variables – release rate constant k, half-life (t1/2), correlation coefficient 

(R2), etc., were determined using Microsoft Excel, 2016. 

 

Results and Discussion 

Weight variations give some indication of both good manufacturing procedures (GMP) and the amount of the API 

(active pharmaceutical ingredient) in the formulation [43]. The hardness test is known to influence disintegration 

time since it indicates how quickly a tablet disintegrates and the active component is released into a medium, 

followed by absorption in pharmacokinetics. As a result, proper tablet hardness and ability to resist powdering are 

necessary for drug quality [44]. The hardness of tablets ranged from 6.7 ± 0.42 to 9.5 ± 0.33, with P1 and P5 
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showing the highest and least values respectively (Figure 2). All brands of paracetamol were found satisfactory. The 

BP requirement for hardness of uncoated tablets ranges from 4 to 10 kg/m2. 

 
Figure 2: Hardness of paracetamol tablets 

The percentage of friability for Innovator and generic brands is shown in Figure 3. The friability test is used in 

conjunction with the hardness test to measure the ability of finished drug products to withstand the pressure that 

emanates from handling, packaging, transportation, and storage [40]. This is largely dependent on the type and 

quantity of binders and other excipients used in the tablet formulation. Percentage friability ranged from 0.0294 ± 

0.003 to 0.1696 ± 0.01, in the order P3 > P2 > P4>P5 >P1. All brands of paracetamol were significantly below the 

USP specified limit of ≤ 1.0 % friability. 

 

 
Figure 3: Friability of paracetamol tablets. 

All brands of paracetamol tablets had disintegration time ranging from 6.4 to 9.1 minutes, this implies that all brands 

of drug complied with USP/BP specifications for the disintegration test [39, 45]. 
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Figure 4: Disintegration time for innovator and brand paracetamol. 

 

Figure 5 shows the UV absorption spectra for paracetamol in 0.1 M NaOH and 0.1 M HCl solution, with maxima at 

257 and 245 nm respectively. The observed maximum for paracetamol in 0.1 M NaOH medium agrees with the 

maximum stipulated by the BP (2009). Also, the calibration curves were straight-line graphs, with the equation as 

Y=0.0724x + 0.0353, with the correlation coefficient (R2) being 0.9983 in 0.1 M NaOH, and Y=0.0816x + 0.1688, 

R2 = 0.9959 in 0.1M HCl. These R2 values depicted good linearity between absorbance and concentration, with 

Beer’s Law obeyed in the concentration range of 2 – 10 µg mL-1. In addition, the slope and intercepts were 0.0724 

and 0.0353 respectively in 0.1 M NaOH, with corresponding values in 0.1 M HCl being 0.0816 and 0.1688. 

 
Figure 5: UV Spectrum of Paracetamol in 0.1 M NaOH and 0.1M HCl 

 

The therapeutic effectiveness of a dosage form is a function of the amount of drug released into the body fluids, 

followed by its absorption into the circulatory system [46], thus making the in-vitro dissolution (bioequivalence) 

studies of solid dosage form imperative and by extension determination of the dissolution rate of a dosage form in 

mimicking the physical action of ingested drugs. Figure 6, shows the dissolution profile of the innovator and the 

generic brands, with the percentage release of paracetamol ranging from 79.89 – 87.88% within 30 minutes. All 

brands except P2 (with a percentage release of 79.89% - slightly below the stipulated acceptable minimum of 80%) 

were considered satisfactory concerning the USP/BP requirements for the dissolution rate of tablet formulation at 
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t30. This implies that all generic brands except P2 could be considered bioequivalent to Innovator brand P5 [34, 47 - 

49]. 

 
Figure 6: Dissolution profile of paracetamol brands (Innovator - P5, and generics - P1. P2, P3, and P4 

 

All brands except P2 complied with the BP specification for solid dosage form paracetamol – as quantities in brands 

ranged from 87.17 ± 0.32 – 100.44 ± 0.17%. The BP specification for paracetamol tablets ranges from 95 to 105%. 

[39]. The innovator brand A5 was found to contain 96.94 ± 0.33 % of the label claim per tablet, while the content of 

paracetamol in the P2 brand was found to be 87.17 ± 0.32%. This corroborates the recent report on substandard 

paracetamol in the Nigerian market [50, 51]. The paired t-tests for accuracy and precision between the label claim 

and amount found in brands ranged from 1.399 – 1.496 (Table 2), while values between P5 (innovator) and generics 

– P1, P2, P3, and P4 were 1.499, 1.500, 1.441 and 1.489 respectively – all test values were < 3.18 (tabulated) at 95% 

confidence level for 3 replicates. This suggested that no significant difference between label claims on brands of 

paracetamol and calculated assay values, in addition, there is a difference between the P5 (innovator) and P1, P2, P3, 

and P4 (generics) respectively in the recovery assay. Furthermore, the relative standard deviation (%RSD, n = 3) and 

standard error of the mean (SEM) ranged from 0.17 to 0.37 and 0.49 to 0.96 respectively, with the least values 

recorded by the innovator brand for both properties. These values indicated high reproducibility and reliability, with 

satisfactory precision and accuracy of method. 

Table 1: Assay of different brands of Paracetamol  

Sample ID Label claim (mg/tablet) Amt found ± Sd(mg/tablet) %RSD SEM Drug Content (%) 

P1 500 482.84 ± 1.63 0.34 0.94 96.57 ± 0.33 

P2 500 435.84 ± 1.60 0.37 0.92 87.17 ± 0.32 

P3 500 502.18 ± 0.87 0.17 0.50 100.44 ± 0.17 

P4 500 484.72 ± 1.66 0.34 0.96 96.94 ± 0.33 

P5 500 499.42 ± 0.85 0.17 0.49 99.78 ± 0.17 

Table 2: Paired t-test of label claim/Brands and Innovator/Generic Brands 

 
BRANDS OF PARACETAMOL  

P1 P2 P3 P4 P5 

Label Claim(500 mg/tablet) t = 1.496 t = 1.460 t = 1.408 t = 1.490 t = 1.399 

Innovator (P5) t = 1.499 t = 1.500 t = 1.441 t = 1.498 Nil 

Sample size (n) 3 3 3 3 3 

Tabulated t-value 3.18 3.18 3.18 3.18 3.18 
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Calculated f1 and f2 values for the in vitro dissolution profile (Table 3) ranged from 6.35 - 11.24 and 99.14 - 110.16 

respectively. In applying this independent model, two dissolution profiles are considered similar and bioequivalent, 

only if the f1 value lies between 0 and 15, while f2 must be between 50 and 100 [41]. This implies that all generic 

brands were comparable to the innovator brand, concerning the difference factor f1, while for similarity factor f2, 

three of the profiles (P1, P3, and P4) were considered comparable to the innovator brand P5. The f2 values for P2 

were> 100. However, some researchers/scientists think that the similarity factor f2 is a biased and conservative 

estimate, which does not consider the dissolution differences between innovator and generic brands and the unequal 

time amplitudes during sampling [52, 53].  

 
Figure 7: Drug release rate constant per time amplitude (t5, t10, t15, t30, t45, t60) (1st order kinetics)  

 

Table 3: In vitro kinetic variables for innovator and generic brands  

Sample 

code 

Dependent model 
Independent 

model 

Release rate const. (k) 

(%.min-1) 

Half-life 

(t1/2)(min) 

Correlation coefficient 

(R2) 
f1 f2 

P1 5.69 x 10-2 12.18 0.7215 6.70 99.4 

P2 4.96 x 10-2 13.97 0.7100 
11.2

4 

110.1

6 

P3 5.07 x10-2 13.67 0.7612 7.17 
100.3

2 

P4 5.59 x10-2 12.40 0.7617 6.35 
102.4

9 

P5 6.49 x 10-2 10.68 0.8037 - - 

 

Also, a comparative dependent model for bioequivalent studies was applied by assuming first-order kinetics [54], 

with the drug release rate constant k calculated iteratively. The in vitro drug release constant k for paracetamol over 

a six-time amplitude (t5 – t60) ranges from (4.96 - 6.49) x10-1 (%.min-1) (Table 3), while half-life (t1/2) – time taken 

for 50% of the drug’s label claim to be released, was from 10.68 – 13.97 minutes. The correlation coefficients R2 

were all ≥ 0.7100 and implied a strong correlation between the amount of drug released and time. The order of the 

drug release was P5>P1> P4>P3> P1, respectively. 
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Conclusion 

The weight uniformity, hardness, friability, and disintegration time of all paracetamol brands examined in this study 

met the USP/BP standards. The dissolution profiles of the innovator and generic brands were found satisfactory, 

except for brand P2, which had a percentage release slightly less than the permitted requirement of 80% at t30. Based 

on the in-vitro drug release profile, all generic brands except P2 may be regarded as bioequivalent to Innovator 

brand P5. There was no significant difference between label claims for paracetamol brands and estimated assay 

values, nor was there a significant difference between P5 and P1, P2, P3, and P4 (generics) in the recovery assay. 

The RSD and SEM results indicated strong reproducibility and dependability, as well as satisfactory procedure 

precision and accuracy. All generic products were comparable to the innovator brand in terms of difference factor f1, 

whereas two of the profiles (P1 and P3) were regarded as comparable to the innovator brand P5. Thus, this method 

can serve as a routine check for solid-dose pharmaceutical quality control. 
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