Quantum-chemical analysis of the relationship between electronic structure and $\mathbf{5 - H T} \mathbf{H}_{2 \mathrm{~A}}, \mathbf{5}-\mathrm{HT}_{2 \mathrm{~B}}$ and $\mathbf{5 - H T} \mathbf{H}_{2 \mathrm{C}}$ receptor binding affinity of a group of N-benzyl tryptamines with possible psychedelic and/or hallucinogenic activity

J.S. Gómez-Jeria* and Ignacio Jaramillo-Hormazábal

Quantum Pharmacology Unit, Laboratory of Theoretical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chile. Las Palmeras 3425, Santiago CP 7800003, Chile.
E-mail: facien03@chile.cl (J.S.G.-J.)

Abstract

We present the results of the application of the Klopman-Peradejordi-Gómez QSAR method to the search of relationships between electronic structure and $5-\mathrm{HT}_{2 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~B}}$ and $5-\mathrm{HT}_{2 \mathrm{C}}$ receptor binding affinity of a group of N benzyl tryptamines. Statistically significant results were obtained for the three receptors. An analysis of the results was conducted on the basis of the local molecular orbital structure and the local atomic reactivity indices of the atoms appearing in the resulting QSAR equations. Suggestions about the possible nature of each atom-site interaction were presented. The two-dimensional partial pharmacophores built from the QSAR equation should be of help to synthesize molecules with higher receptor affinity.

Keywords: QSAR, N-benzyl tryptamines, $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor, $5-\mathrm{HT}_{2 \mathrm{~B}}$ receptor, $5-\mathrm{HT}_{2 \mathrm{C}}$ receptor, serotonin, psychedelics, hallucinogens, KPG method, receptor affinity, Klopman-Peradejordi-Gómez method, electronic structure.

Abstract

1. Introduction

Serotonin receptors (or 5-HT receptors), belong to the G protein-coupled receptors superfamily. They mediate the effects of serotonin, a neurotransmitter implicated in several physiological phenomena, including appetite, blood pressure, mood, pain, sleep cycle and the regulation of body temperature ${ }^{1}$. As molecules acting at serotonin receptors have been the object of many studies in our Unit we refer the reader to these articles for more information ${ }^{2-19}$. Halberstadt inform us that "one class of hallucinogens are 2,5-dimethoxy-substituted phenethylamines, such as the so-called 2C-X compounds 2,5-dimethoxy-4-bromophenethylamine and 2,5-dimethoxy-4-iodophenethylamine. Addition of an N -benzyl group to phenethylamine hallucinogens produces a marked increase in $5-\mathrm{HT}_{2 \mathrm{~A}}$-binding affinity and hallucinogenic potency. N-benzylphenethylamines ("NBOMes") such as N -(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine show subnanomolar affinity for the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor and are reportedly highly potent in humans" ${ }^{20,21}$. It was only a question of time to synthesize different N-benzyl tryptamines. For example,

Toro-Sazo et al. synthesized a large number of N-benzyltryptamines and reported their receptor affinity for several serotonin receptors.
This paper reports the results of the application of the Klopman-Peradejordi-Gómez QSAR method to these molecules. We expected to obtain formal equations relating the variation of the affinity for $5-\mathrm{HT}_{2 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~B}}$ and 5$\mathrm{HT}_{2 \mathrm{C}}$ receptors with the variation of the numerical values of a large group of local atomic reactivity indices inside each equation.

Molecules and receptor binding affinities.
The molecules and their pK values were obtained from a paper from Toro-Sazo et al. ${ }^{22}$ The general formula is shown in Figure 1 and the pK data in Table 1.

Figure 1: N-benzyltryptamines
Table 1: N-benzyltryptamines and receptor binding affinities

Molecule	R1	\mathbf{R}_{2}	R3	R4	R5	R6	$\frac{\mathrm{pK}}{5-\mathrm{HT}_{2 \mathrm{~A}}}$	$\frac{\mathrm{pK}}{5-\mathrm{HT}_{2 \mathrm{~B}}}$	$\begin{gathered} \mathrm{pK} \\ 5-\mathrm{HT}_{2 \mathrm{C}} \end{gathered}$
1	H	H	H	H	H	H	6.61	7	6.73
2	OH	H	H	H	H	H	6.94	7.17	7.07
3	OMe	H	H	H	H	H	7.05	7.33	6.65
4	Me	H	H	H	H	H	-------	6.47	6.18
5	Cl	H	H	H	H	H	7.92	7.63	7.61
6	Br	H	H	H	H	H	6.71	7.13	6.47
7	H	OH	H	H	H	H	7.12	7.43	7.59
8	H	Me	H	H	H	H	7.84	7.77	7.13
9	H	F	H	H	H	H	6.59	6.9	6.67
10	H	Cl	H	H	H	H	7.35	7.46	7.01
11	H	Br	H	H	H	H	8.09	7.66	7.12
12	H	H	OH	H	H	H	6.04	6.31	6
13	H	H	OMe	H	H	H	6.34	7.16	6.45
14	H	H	Me	H	H	H	6.38	7.13	6.48
15	H	H	OEt	H	H	H	6.56	6.57	6.13
16	H	H	Cl	H	H	H	6.15	6.65	6.02
17	H	H	Br	H	H	H	6	6.58	5.97
18	H	H	NO_{2}	H	H	H	5.58	6.7	5.85
19	OH	OMe	H	H	H	H	7.85	7.88	7.78
20	OMe	OMe	H	H	H	H	5.82	6.71	5.95
21	OH	Br	H	H	H	H	7.85	7.81	6.86
22	OH	F	H	H	H	H	6.68	6.89	6.75
23	OH	H	H	Me	H	H	6.13	6.81	6.57
24	OH	H	H	H	H	H	6.12	7.11	6.98
25	OMe	H	H	F	H	H	6.44	7.02	6.82
26	OH	H	H	Br	H	H	6.51	------	6.14
27	OMe	H	H	Br	H	H	5.95	7.04	6.87
28	OMe	H	H	Cl	H	H	6.01	6.1	5.88
29	OMe	H	H	OMe	H	H	6.48	7.24	7.06
30	OH	H	H	NO_{2}	H	H	-------	6.05	-------
31	OH	H	Br	H	H	H	5.81	6.96	6.22

32	OMe	H	OMe	H	H	H	6.18	6.63	6.57
33	OH	H	H	H	Br	H	5.78	7.16	6.95
34	OH	H	H	H	F	H	6.64	6.94	6.81
35	OH	Br	H	Br	H	H	------	5.22	------
36	H	OMe	OMe	H	H	H	5.89	6.54	5.92
37	H	H	H	H	H	OMe	7.48	7.78	7.02
38	OMe	H	H	H	H	OMe	7.35	7.8	7.16
39	Cl	H	H	H	H	OMe	7.87	7.43	7.13
40	Br	H	H	H	H	OMe	7.91	7.54	7.15
41	H	H	Br	H	H	OMe	6.41	6.81	6.42
42	OH	H	H	OMe	H	OMe	6.87	7.69	7.39
43	OH	H	H	F	H	OMe	8.4	8.05	7.4
							$\mathrm{n}=40$	$\mathrm{n}=42$	$\mathrm{n}=41$

The next figures show the histogram of frequencies and the Box-Whiskers plot of values binding data for the three receptors. This is to give a general information about the data. The Box-Whiskers plot makes it easy to spot outliers and extreme values that should not be omitted from the original set of values.

Figure 2:-HT ${ }_{2 A}$ receptor data. Histogram of frequencies

Figure 3: $H T_{2 A}$ receptor data. Box-Whiskers plot

Figure 4: $H T_{2 B}$ receptor data. Histogram of frequencies

Figure 5: $H T_{2 B}$ receptor data. Box-Whiskers plot

Figure 6: $\mathrm{HT}_{2 \mathrm{C}}$ receptor data. Histogram of frequencies

Figure 7: $H T_{2 C}$ receptor data. Box-Whiskers plot

Models.

The Klopman-Peradejordi-Gómez (KPG) QSAR method is based on the following linear equation ${ }^{23-32}$:

$$
\begin{align*}
& \log (\mathrm{BA})=\mathrm{a}+\mathrm{blog}\left(\mathrm{M}_{\mathrm{D}}\right)+\sum_{\mathrm{o}=1}^{\text {sub }} \varphi_{\mathrm{o}}+\sum_{\mathrm{i}=1}^{\mathrm{Y}}\left[\mathrm{e}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}^{\mathrm{E}}+\mathrm{s}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}^{\mathrm{N}}\right]+ \\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}} \sum_{\mathrm{m}=(\mathrm{HOMO}-2)^{*}, \mathrm{i}}^{(\mathrm{HOMO})^{*}, \mathrm{i}}\left[\mathrm{~h}_{\mathrm{i}}(\mathrm{~m}) \mathrm{F}_{\mathrm{i}}\left(\mathrm{~m}^{*}\right)+\mathrm{j}_{\mathrm{i}}(\mathrm{~m}) \mathrm{S}_{\mathrm{i}}^{\mathrm{E}}\left(\mathrm{~m}^{*}\right)\right]+ \tag{1}\\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}} \sum_{\mathrm{m}^{\prime}=(\mathrm{LUMO})^{*}, \mathrm{i}}^{(\mathrm{LUMO}+2)^{*}, \mathrm{i}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{~m}^{\prime}\right) \mathrm{F}_{\mathrm{i}}\left(\mathrm{~m}^{\prime *}\right)+\mathrm{t}_{\mathrm{i}}\left(\mathrm{~m}^{\prime}\right) \mathrm{S}_{\mathrm{i}}^{\mathrm{N}}\left(\mathrm{~m}^{\prime *}\right)\right]+ \\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}}\left[\mathrm{~g}_{\mathrm{i}} \mu_{\mathrm{i}}^{*}+\mathrm{k}_{\mathrm{i}} \eta_{\mathrm{i}}^{*}+\mathrm{o}_{\mathrm{i}} \omega_{\mathrm{i}}^{*}+\mathrm{z}_{\mathrm{i}} \zeta_{\mathrm{i}}^{*}+\mathrm{w}_{\mathrm{j}} \mathrm{Q}_{\mathrm{i}}^{*, \max }\right]
\end{align*}
$$

where BA is a biological activity, M_{D} is the drug's mass and φ_{o} is the orientational parameter of the o-th substituent (the summation runs over all the substituents selected for the research). Q_{i} is the net charge of atom i and S_{i}^{E} and S_{i}^{N} are, respectively, the total atomic electrophilic and nucleophilic superdelocalizabilities of atom i. $\mathrm{F}_{\mathrm{i}, \mathrm{m}^{*}}$ is the electron population of atom i in occupied (empty) local MO $\mathrm{m}^{*}\left(\mathrm{~m}^{\prime *}\right), \mathrm{S}_{\mathrm{i}}^{\mathrm{E}}(\mathrm{m})^{*}$ is the orbital electrophilic superdelocalizability at occupied local MO m^{*} of atom i and $S_{i}^{N}\left(m^{\prime}\right)^{*}$ is the orbital nucleophilic superdelocalizability at empty local MO m'* of atom i. $\mu_{i}^{*}, \eta_{i}^{*}, \omega_{i}^{*}, \zeta_{i}^{*}$ and $\mathrm{Q}_{\mathrm{i}}^{* \text {,max }}$ are, respectively, the local atomic electronic chemical potential, the local atomic hardness, the local atomic electrophilicity, the local atomic softness and the maximal amount of electronic charge that atom i may accept. These indices were developed within the Hartree-Fock formalism. The molecular orbitals with an asterisk are the Local Molecular Orbitals (LMO) of each atom. For atom x, the LMOs are defined as the subset of the molecule's MOs having an electron population greater than 0.01 e on x . In this study we have considered the three highest occupied local MOs ((HOMO)*, (HOMO-1)*, (HOMO-2)*) and the three lowest empty local MOs ((LUMO)*, (LUMO+1)*, (LUMO+2)*) of each atom because experimental evidence indicates that they are determinant for molecular reactivity. The index Y in the summations runs over all atoms composing the molecule. Excellent results were obtained for different molecular systems and biological activities.

Electronic Structure Calculations
The electronic structure of all molecules was calculated within the Density Functional Theory (DFT) at the B3LYP/6-31g(d,p) level after full geometry optimization. The Gaussian suite of programs was used ${ }^{33}$. All the information needed to calculate the values of the local atomic reactivity indices was obtained from the Gaussian results with the D-Cent-QSAR software ${ }^{34}$. All the electron populations smaller than or equal to 0.01 e were considered as zero. Negative electron populations originating from Mulliken Population Analysis were corrected as usual ${ }^{35}$. We employed Linear Multiple Regression Analysis (LMRA) techniques to find the best solution. For each case, a matrix containing the dependent variable (the receptor binding affinity of each case) and the local atomic reactivity indices of all atoms of the common skeleton as independent variables was created. The Statistica software was utilized for LMRA ${ }^{36}$.
The reader should notice that to solve the system of equations 1 necessarily we must use the same number of atoms for each molecule (i.e., index Y in Eq. 1 must be the same for all molecules). For this reason, we introduced the concept of common skeleton. It corresponds to a definite collection of atoms, common to all molecules analyzed, that supposedly accounts for nearly all the biological activity. The action of the substituents consists in modifying the electronic structure of the common skeleton and influencing the right alignment of the drug throughout the orientational parameters. It is hypothesized that different parts or this common skeleton accounts for almost all the interactions leading to the expression of a given biological activity. The common skeleton for N-benzyltryptamines is shown in Fig. 8.

Figure 8: Common skeleton numbering

Results

Results for the $\mathbf{5 - H T} 2 \mathrm{H}$ receptor.

The best equation found is:

$$
\begin{align*}
& \mathrm{pK}_{\mathrm{i}}=13.41-5.25 \mathrm{~S}_{9}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}-0.11 \mathrm{~S}_{20}^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}-3.28 \mathrm{Q}_{13}^{*, \text { max }}+0.75 \eta_{14}- \\
& -1.69 \mathrm{~F}_{16}(\mathrm{HOMO})^{*}-26.35 \mathrm{Q}_{20}+7.06 \mathrm{~S}_{21}^{\mathrm{E}}(\mathrm{HOMO})^{*} \tag{2}
\end{align*}
$$

with $\mathrm{n}=33, \mathrm{R}=0.95, \mathrm{R}^{2}=0.92$, adj- $\mathrm{R}^{2}=0.89, \mathrm{~F}(7,24)=39.664$ ($p<0.000001$) and $\mathrm{SD}=0.20$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{S}_{9}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$ is the electrophilic superdelocalizability of the second highest local MO of atom $9, \mathrm{~S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ is the nucleophilic superdelocalizability of the second lowest empty MO localized on atom $20, \mathrm{Q}_{13}^{*, \text { max }}$ is the is the maximum amount of electronic charge that atom 13 can accept, η_{14} is the local atomic hardness of atom $14, \mathrm{~F}_{16}(\mathrm{HOMO})^{*}$ is the electron population of the highest occupied MO localized on atom 16 (the Fukui index), Q_{20} is the net charge of atom 20 and $\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}) *$ is the electrophilic superdelocalizability of the highest occupied MO localized on atom 21.
Tables 2 and 3 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 2. Figure 9 displays the plot of observed vs. calculated binding affinities.

Table 2: Beta coefficients and t-test for significance of coefficients in Eq. 2.

Variable	Beta	$\mathbf{t}(\mathbf{2 5})$	p-level
$\mathrm{S}_{\mathrm{F}}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$	-0.51	-6.87	0.000000
$\mathrm{~S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$	-0.47	-6.85	0.000000
$\mathrm{Q}_{13}^{* \text { max }}$	-0.45	-7.04	0.000000
η_{14}	0.40	5.91	0.000004
$\mathrm{~F}_{16}(\mathrm{HOMO})^{*}$	-0.41	-5.05	0.000033
Q_{20}	-0.29	-3.65	0.001
$\mathrm{~S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$	0.22	2.83	0.009

Table 3: Matrix of squared correlation coefficients for the variables in Eq. 2.

	$\mathbf{S}_{9}^{\mathrm{E}}(\mathbf{H O M O}-1)^{*}$	$\mathbf{S}_{\mathbf{2 0}}{ }^{\mathrm{N}}(\mathbf{L U M O}+\mathbf{1})^{*}$	$\mathbf{Q}_{13}^{*, \text { max }}$	$\boldsymbol{\eta}_{\mathbf{1 4}}$	$\mathbf{F}_{\mathbf{1 6}}(\mathbf{H O M O})^{*}$	$\mathbf{Q}_{\mathbf{2 0}}$
$\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$	0.03	1				
$\mathrm{Q}_{13}^{*, \text { max }}$	0.05	0.09	1			
η_{14}	0.08	0.02	0.00	1		
$\mathrm{~F}_{16}$ (HOMO)*	0.02	0.03	0.04	0.06	1	
Q_{20}	0.16	0.00	0.01	0.01	0.32	1
$\mathrm{~S}_{21}{ }^{\mathrm{E}}$ (HOMO)*	0.21	0.18	0.01	0.16	0.02	0.01

A 0.00 with any number of decimal places found in any Table and similar ones means that the actual value is lesser than the table value.

Figure 9: Plot of predicted vs. observed $p K_{i}$ values (Eq. 2). Dashed lines denote the 95% confidence interval.

The associated statistical parameters of Eq. 2 indicate that this equation is statistically significant and that the variation of the numerical values of a group of seven local atomic reactivity indices of atoms constituting the common skeleton explains about 89% of the variation of pK values. Figure 9, spanning about 2.1 orders of magnitude, shows that there is a good correlation of observed versus calculated values. Table 3 shows no significant correlations among independent variables.
The next two figures show the histogram of frequencies and the Box-Whiskers plot of values with median and quartile values for the data set ($n=33$) used to obtain Eq. 2 .

Figure 10: Histogram of frequencies of the data used to obtain Eq. 2.

Figure 11: Box-Whiskers plot of values used to obtain Eq. 2.
Figures 12, 13 and 14 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 12: Plot of predicted values vs. residuals scores

Figure 13: Plot of residuals vs. deleted residuals

Figure 14: Normal probability plot of residuals

Figures 12 to 14 allow to state that the linear equation 3 is a good approximation to study this biological data and show that the regression coefficients are stable.

Results for the 5-HT ${ }_{2 B}$ receptor

The best equation found is:

$$
\begin{align*}
& \mathrm{pK}_{\mathrm{i}}=8.06+2.19 \mathrm{~F}_{14}(\mathrm{LUMO})^{*}+0.06 \mathrm{~S}_{20}^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}-11.87 \mathrm{~S}_{21}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*-} \\
& -1.43 \mathrm{~S}_{4}^{\mathrm{N}}(\mathrm{LUMO})^{*}+0.002 \mathrm{~S}_{23}^{\mathrm{N}}-18.57 \mathrm{~s}_{13}-0.10 \mathrm{~S}_{6}^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}+0.32 \mathrm{~S}_{22}^{\mathrm{N}}(\mathrm{LUMO})^{*}+ \tag{3}\\
& +0.00001 \mathrm{~S}_{22}^{\mathrm{N}}-0.001 \mathrm{~S}_{21}^{\mathrm{N}}+0.77 \mathrm{~S}_{13}^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}
\end{align*}
$$

with $\mathrm{n}=38, \mathrm{R}=0.96, \mathrm{R}^{2}=0.93$, adj- $\mathrm{R}^{2}=0.89, \mathrm{~F}(11,26)=29.420(p<0.00000)$ and $\mathrm{SD}=0.16$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{F}_{14}(\mathrm{LUMO}) *$ is the electron population of the lowest empty local MO localized on atom $14, \mathrm{~S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+2) *$ is the nucleophilic superdelocalizability of the third lowest empty local

MO of atom $20, \mathrm{~S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$ is the electrophilic superdelocalizability of the second highest local MO of atom $21, \mathrm{~S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$ is the nucleophilic superdelocalizability of the lowest empty local MO of atom $4, \mathrm{~S}_{23}{ }^{\mathrm{N}}$ is the total atomic nucleophilic superdelocalizability of atom $23, \mathrm{~s}_{13}$ is the local atomic softness of atom $13, \mathrm{~S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ is the nucleophilic superdelocalizability of the second lowest empty MO of atom $6, \mathrm{~S}_{22}{ }^{\mathrm{N}}(\mathrm{LUMO}) *$ is the nucleophilic superdelocalizability of the lowest empty MO of $22, \mathrm{~S}_{22}{ }^{\mathrm{N}}$ is the total atomic nucleophilic superdelocalizability of atom 22, $\mathrm{S}_{21}{ }^{\mathrm{N}}$ is the total atomic nucleophilic superdelocalizability of atom 21 , and $\mathrm{S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$ is the electrophilic superdelocalizability of the third highest occupied local MO of atom 13.
Tables 4 and 5 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 3. Figure 15 displays the plot of observed $v s$. calculated pK values.

Table 4: Beta coefficients and t-test for significance of coefficients in Eq. 3.

Variable	Beta	$\mathbf{t}(\mathbf{2 6})$	p-level
$\mathrm{F}_{14}(\mathrm{LUMO})^{*}$	0.39	5.25	0.00002
$\mathrm{~S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$	0.31	5.24	0.00002
$\mathrm{~S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$	-0.40	-6.62	0.000001
$\mathrm{~S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$	-0.29	-4.62	0.00009
$\mathrm{~S}_{23}{ }^{\mathrm{N}}$	0.28	4.78	0.00006
$\mathrm{~S}_{13}$	-0.47	-6.09	0.000002
$\mathrm{~S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$	-0.26	-3.79	0.0008
$\mathrm{~S}_{22}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$	0.27	4.19	0.0003
$\mathrm{~S}_{22}{ }^{\mathrm{N}}$	0.20	3.47	0.002
$\mathrm{~S}_{21} \mathrm{~N}$	-0.25	-3.78	0.0008
$\mathrm{~S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$	0.15	2.33	0.03

Table 5: Matrix of squared correlation coefficients for the variables in Eq. 3

	Var268	Var396	Var412	Var74	Var444	Var259	Var115	Var434	Var424	Var404
Var396	$\mathbf{0 . 0 8}$	$\mathbf{1 . 0 0}$								
Var412	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{1 . 0 0}$							
Var74	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 3}$	$\mathbf{1 . 0 0}$						
Var444	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 2}$	$\mathbf{1 . 0 0}$					
Var259	$\mathbf{0 . 2 9}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0}$	$\mathbf{1 . 0 0}$				
Var115	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 9}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 2 0}$	$\mathbf{1 . 0 0}$			
Var434	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 1}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 6}$	$\mathbf{1 . 0 0}$		
Var424	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{1 . 0 0}$	
Var404	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1 4}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 1 2}$	$\mathbf{1 . 0 0}$
Var251	$\mathbf{0 . 1 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 5}$

Figure 15: Plot of predicted vs. observed $p K_{i}$ values (Eq. 3). Dashed lines denote the 95% confidence interval
The associated statistical parameters of Eq. 3 indicate that this equation is statistically significant and that the variation of the numerical values of a group of eleven local atomic reactivity indices of atoms constituting the common skeleton explains about 89% of the variation of the pK values. Figure 15 , spanning about 2 orders of magnitude, shows that there is a good correlation of observed versus calculated values. Table 4 shows no significant correlations among independent variables. Figures 16,17 and 18 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 16: Plot of predicted values vs. residuals scores

Figure 17: Plot of residuals vs. deleted residuals

Figure 18: Normal probability plot of residuals
Figures 16 to 18 permit to state that the linear equation 3 is a good approximation to study this biological data and show that the regression coefficients are stable. The next two figures show the histogram of frequencies and the Box-Whiskers plot of values with median and quartile values for the data set ($\mathrm{n}=38$) used to obtain Eq. 3 .

Figure 19: Histogram of frequencies of the data used to obtain Eq. 3.

Figure 20: Box-Whiskers plot of values used to obtain Eq. 3.

Results for the $5-\mathrm{HT}_{2 \mathrm{C}}$ receptor

It was not possible to obtain a single equation for the whole set of data. Therefore, and using an empirical approach we divided the set in two parts. The first set contains the fifteen lowest experimental values and the second one the twenty-six highest experimental values. For both of them we obtained statistically significant QSAR equations.

Results for the $\mathbf{1 5}$ lowest experimental values of $\mathbf{5 - H} \mathbf{H}_{\mathbf{2 C}}$ receptor affinities

Figures 21 and 22 show, respectively, the histogram of frequencies and the Box-Whiskers plot of values with median and quartile values for the data set $(\mathrm{n}=15)$ used to obtain Eq. 4 .

Figure 21: Histogram of frequencies of the data used to obtain Eq. 4.

The best equation found is:

$$
\begin{align*}
& \mathrm{pK}_{\mathrm{i}}=12.57-30.52 \mathrm{~s}_{16}+0.99 \mathrm{~S}_{10}^{\mathrm{N}}(\mathrm{LUMO}+1)^{*-} \tag{4}\\
& -30.79 \mathrm{~F}_{10}(\mathrm{LUMO})^{*}+0.67 \mathrm{~F}_{17}(\mathrm{HOMO}-2)^{*}+0.33 \mathrm{Q}_{17}
\end{align*}
$$

with $\mathrm{n}=15, \mathrm{R}=0.98, \mathrm{R}^{2}=0.96$, adj $-\mathrm{R}^{2}=0.93, \mathrm{~F}(5,9)=39.343$ ($p<0.00001$) and $\mathrm{SD}=0.06$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, s_{16} is the local atomic softness of atom $16, \mathrm{~S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ is the nucleophilic superdelocalizability of the second lowest empty local MO of atom $10, \mathrm{~F}_{10}(\mathrm{LUMO})^{*}$ is the electron population of the lowest empty local MO of atom $\left.10, \mathrm{~F}_{17}(\mathrm{HOMO}-2)^{*}\right)^{*}$ is the electron population of the third highest occupied local MO of atom 17 , and Q_{17} is the net charge of atom 17.

Table 6: Beta coefficients and t-test for significance of coefficients in Eq. 4.

Variable	Beta	t(9)	p-level
$\mathbf{S 1 6}^{16}$	-1.25	-13.76	0.000000
$\mathbf{S}_{10}{ }^{\mathrm{N}}$ (LUMO+1)*	0.95	9.95	0.000004
$\mathbf{F}_{\mathbf{1 0}}(\mathbf{L U M O})^{*}$	-0.40	-4.86	0.0009
$\mathbf{F}_{\mathbf{1 7}}(\mathbf{H O M O}-2)^{*}$	0.42	5.43	0.0004
\mathbf{Q}_{17}	0.28	3.74	0.005

Table 7: Matrix of squared correlation coefficients for the variables in Eq. 4.

	$\mathbf{S}_{\mathbf{1 6}}$	$\mathbf{S}_{\mathbf{1 0}}{ }^{\mathbf{N}}(\mathbf{L U M O}+\mathbf{1})^{*}$	$\mathbf{F}_{\mathbf{1 0}}(\mathbf{L U M O})^{*}$	$\mathbf{F}_{\mathbf{1 7}}(\mathbf{H O M O} \mathbf{2})^{*}$	\mathbf{Q}_{17}
$\mathbf{S}_{\mathbf{1 6}}$	1.00				
$\mathbf{S}_{\mathbf{1 0}}{ }^{\mathbf{N}}(\mathbf{L U M O}+\mathbf{1}) *$	0.26	1.00			
$\mathbf{F}_{\mathbf{1 0}}(\mathbf{L U M O})^{*}$	0.00	0.19	1.00		
$\mathbf{F}_{\mathbf{1 7}}(\mathbf{H O M O}-2)^{*}$	0.07	0.00	0.03	1.00	
$\mathbf{Q}_{\mathbf{1 7}}$	0.03	0.00	0.00	0.05	1.00

Figure 23: Plot of predicted vs. observed $p K_{i}$ values (Eq. 4). Dashed lines denote the 95% confidence interval. The associated statistical parameters of Eq. 4 indicate that this equation is statistically significant and that the variation of the numerical values of a group of five local atomic reactivity indices of atoms constituting the common skeleton explains about 93% of the variation of the pK_{i} values. Figure 23 shows that there is a good correlation of observed versus calculated values. Table 7 shows no significant correlations among independent variables.

Figures 24,25 and 26 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 24: Plot of predicted values vs. residuals scores

Figure 25: Plot of residuals vs. deleted residuals

Figures 24 to 26 allow to state that the linear equation 3 is a good approximation to study this biological data and show that the regression coefficients are stable.
Results for the 26 highest experimental values of $\mathbf{5}-\mathbf{H T}_{\mathbf{2}}$ receptor affinities
Figures 27 and 28 show, respectively, the histogram of frequencies and the Box-Whiskers plot of values with median and quartile values for the data set $(\mathrm{n}=26)$ used to obtain Eq. 5 .

Figure 27: Histogram of frequencies of the data used to obtain Eq. 5

Figure 28: Box-Whiskers plot of values used to obtain Eq. 5
The best equation found is:

$$
\begin{align*}
& \mathrm{pK}_{\mathrm{i}}=7.90+1.81 \mathrm{~F}_{8}(\mathrm{LUMO}+1)^{*}-2.80 \mathrm{~F}_{6}(\mathrm{HOMO}-2)^{*}+ \\
& +0.22 \mathrm{~S}_{18}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}+1.27 \mathrm{~S}_{13}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}-0.08 \mathrm{~S}_{4}^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}+ \tag{5}\\
& +0.003 \mathrm{~S}_{6}^{\mathrm{N}}+0.65 \mathrm{~F}_{5}(\mathrm{LUMO})^{*}
\end{align*}
$$

with $\mathrm{n}=26, \mathrm{R}=0.98, \mathrm{R}^{2}=0.95$, adj- $\mathrm{R}^{2}=0.93, \mathrm{~F}(7,18)=51.080$ ($p<0.00000$) and $\mathrm{SD}=0.08$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{F}_{8}(\mathrm{LUMO}+1)^{*}$ is the electron population of the second lowest empty local MO of atom $8, \mathrm{~F}_{6}(\mathrm{HOMO}-2)^{*}$ is the electron population of the third highest occupied local MO of atom $6, \mathrm{~S}_{18}{ }^{\mathrm{E}}$ (HOMO-1)* is the electrophilic superdelocalizability of the second highest occupied local MO of atom 18 , $\mathrm{S}_{13}{ }^{\mathrm{E}}$ (HOMO-1)* is the electrophilic superdelocalizability of the second highest occupied local MO of atom $13, \mathrm{~S}_{6}{ }^{\mathrm{N}}$ is the total atomic nucleophilic superdelocalizability of atom 6 , and $F_{5}(\mathrm{LUMO})^{*}$ is the electron population of the lowest empty local MO of atom 5.

Table 8: Beta coefficients and t-test for significance of coefficients in Eq. 5.

Variable	Beta	t(18)	p-level
$\mathrm{F}_{8}(\mathrm{LUMO}+1)^{*}$	0.63	11.47	0.000000
$\mathrm{~F}_{6}(\mathrm{HOMO}-2)^{*}$	-0.19	-2.87	0.01
$\mathrm{~S}_{18}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$	0.39	7.10	0.000001
$\mathrm{~S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$	0.38	6.71	0.000003
$\mathrm{~S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$	-0.27	-4.90	0.0001
$\mathrm{~S}_{6}{ }^{\mathrm{N}}$	0.34	4.90	0.0001
$\mathrm{~F}_{5}(\mathrm{LUMO})^{*}$	0.19	3.24	0.005

Table 9: Matrix of squared correlation coefficients for the variables in Eq. 5.

	Var149	Var105	Var352	Var252	Var76	Var104
Var149	1.00					
Var105	0.00	1.00				
Var352	0.01	0.05	1.00			
Var252	0.02	0.01	0.00	1.00		
Var76	0.02	0.02	0.01	0.09	1.00	
Var104	0.02	0.29	0.00	0.05	0.03	1.00
Var88	0.03	0.03	0.03	0.02	0.03	0.07

Figure 29: Plot of predicted vs. observed pKivalues (Eq. 5). Dashed lines denote the 95% confidence interval. The associated statistical parameters of Eq. 5 indicate that this equation is statistically significant and that the variation of the numerical values of a group of seven local atomic reactivity indices of atoms constituting the common skeleton explains about 93% of the variation of the receptor affinity. Figure 29 shows that there is a good
correlation of observed versus calculated values. Table 9 shows no significant correlations among independent variables.
Figures 30, 31 and 32 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 30: Plot of predicted values vs. residuals scores

Figure 31: Plot of residuals vs. deleted residuals

Figure 32: Normal probability plot of residuals

Figures 30 to 32 allow us to state that the linear equation 3 is a good approximation to study this biological data and show that the regression coefficients are stable.

Local Molecular Orbitals.

Tables 10 to 13 show the Local Molecular Orbitals of atoms appearing in the QSAR equations.
Table 10. Local Molecular Orbitals of atoms 4, 5, and 6.

Mol.	Atom 4 (sp ${ }^{2}$ C)	Atom 5 ($\mathbf{s p}^{2} \mathrm{C}$)	Atom 6 ($\mathrm{sp}^{2} \mathrm{C}$)
1 (67)	$65 \pi 66 \pi 67 \pi$ -	$65 \pi 66 \pi 67 \pi$ -	$65 \pi 66 \pi 67 \pi$ -
	$71 \pi 73 \pi 74 \pi$	$71 \pi 72 \pi 73 \pi$	$71 \pi 73 \pi 74 \pi$
2 (71)	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi-$	$68 \pi 70 \pi 71 \pi-$
	$74 \pi 77 \pi 78 \pi$	$74 \pi 76 \pi 77 \pi$	$74 \pi 77 \pi 78 \pi$
3 (75)	$72 \pi 74 \pi 75 \pi-$	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi$ -
	$78 \pi 80 \pi 81 \pi$	$78 \pi 80 \pi 82 \pi$	$78 \pi 80 \pi 81 \pi$
4 (71)	$69 \pi 70 \pi 71 \pi-$	$68 \pi 70 \pi 71 \pi-$	$69 \pi 70 \pi 71 \pi-$
	$75 \pi 77 \pi 78 \pi$	$75 \pi 77 \pi 78 \pi$	$75 \pi 77 \pi 78 \pi$
5 (75)	$73 \pi 74 \pi 75 \pi$ -	$73 \pi 74 \pi 75 \pi-$	$73 \pi 74 \pi 75 \pi-$
	$79 \pi 81 \pi 82 \pi$	$79 \pi 81 \pi 82 \pi$	$78 \pi 79 \pi 81 \pi$
6 (84)	$82 \pi 83 \pi 84 \pi$ -	$82 \pi 83 \pi 84 \pi$ -	$82 \pi 83 \pi 84 \pi$ -
	$88 \pi 90 \pi 91 \pi$	$88 \pi 90 \pi 91 \pi$	$88 \pi 90 \pi 92 \pi$
7 (71)	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi-$	$68 \pi 70 \pi 71 \pi-$
	$75 \pi 77 \pi 78 \pi$	$75 \pi 76 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$
8 (71)	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi$ -
	$75 \pi 77 \pi 78 \pi$	$75 \pi 76 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$
9 (71)	$69 \pi 70 \pi 71 \pi$ -	$69 \pi 70 \pi 71 \pi-$	$69 \pi 70 \pi 71 \pi-$
	$75 \pi 77 \pi 78 \pi$	$75 \pi 76 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$
10 (75)	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi-$	$72 \pi 74 \pi 75 \pi-$
	$79 \pi 82 \pi 83 \pi$	$79 \pi 81 \pi 82 \pi$	$79 \pi 82 \pi 83 \pi$
11 (84)	$81 \pi 83 \pi 84 \pi$ -	$81 \pi 83 \pi 84 \pi$ -	$81 \pi 83 \pi 84 \pi$ -
	$88 \pi 91 \pi 92 \pi$	$88 \pi 90 \pi 91 \pi$	$88 \pi 91 \pi 92 \pi$
12 (71)	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi-$	$68 \pi 70 \pi 71 \pi$ -
	$75 \pi 77 \pi 78 \pi$	$75 \pi 76 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$
13 (75)	$72 \pi 74 \pi 75 \pi-$	$72 \pi 74 \pi 75 \pi-$	$72 \pi 74 \pi 75 \pi-$
	$79 \pi 81 \pi 82 \pi$	$79 \pi 80 \pi 81 \pi$	$78 \pi 79 \pi 80 \pi$
14 (71)	$69 \pi 70 \pi 71 \pi$ -	$69 \pi 70 \pi 71 \pi$ -	$69 \pi 70 \pi 71 \pi-$
	$75 \pi 77 \pi 78 \pi$	$75 \pi 76 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$
15 (79)	$76 \pi 78 \pi 79 \pi-$	$76 \pi 78 \pi 79 \pi-$	$76 \pi 78 \pi 79 \pi-$
	$83 \pi 84 \pi 85 \pi$	$83 \pi 84 \pi 85 \pi$	$82 \pi 83 \pi 84 \pi$
16 (75)	$73 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi$ -	$73 \pi 74 \pi 75 \pi$ -
	$79 \pi 82 \pi 83 \pi$	$79 \pi 8182 \pi$	$79 \pi 82 \pi 83 \pi$
17 (84)	$81 \pi 83 \pi 84 \pi$ -	$81 \pi 83 \pi 84 \pi$ -	$81 \pi 83 \pi 84 \pi$ -
	$88 \pi 91 \pi 92 \pi$	$88 \pi 90 \pi 91 \pi$	$88 \pi 91 \pi 92 \pi$
18 (78)	$76 \pi 77 \pi 78 \pi-$	$76 \pi 77 \pi 78 \pi-$	$76 \pi 77 \pi 78 \pi-$
	$83 \pi 85 \pi 86 \pi$	$83 \pi 85 \pi 86 \pi$	$83 \pi 85 \pi 86 \pi$
19 (79)	$76 \pi 78 \pi 79 \pi-$	$76 \pi 78 \pi 79 \pi$ -	$76 \pi 78 \pi 79 \pi-$
	$82 \pi 84 \pi 85 \pi$	$82 \pi 84 \pi 86 \pi$	$82 \pi 84 \pi 86 \pi$
20 (83)	$80 \pi 82 \pi 83 \pi$ -	$80 \pi 82 \pi 83 \pi$ -	$80 \pi 82 \pi 83 \pi$ -
	$86 \pi 88 \pi 89 \pi$	$86 \pi 88 \pi 90 \pi$	$86 \pi 88 \pi 90 \pi$
21 (88)	$85 \pi 87 \pi 88 \pi$ -	$85 \pi 87 \pi 88 \pi$ -	$85 \pi 87 \pi 88 \pi$ -
	$92 \pi 94 \pi 95 \pi$	$92 \pi 94 \pi 95 \pi$	$92 \pi 94 \pi 96 \pi$
22 (75)	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi$ -
	$78 \pi 81 \pi 82 \pi$	$78 \pi 80 \pi 81 \pi$	$78 \pi 81 \pi 82 \pi$
23 (75)	$72 \pi 74 \pi 75 \pi-$	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi-$
	$78 \pi 80 \pi 81 \pi$	$78 \pi 80 \pi 81 \pi$	$78 \pi 81 \pi 82 \pi$

24 (75)	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$
25 (79)	$\begin{aligned} & 76 \pi 78 \pi 79 \pi- \\ & 83 \pi 85 \pi 86 \pi \end{aligned}$	$\begin{gathered} 76 \pi 78 \pi 79 \pi- \\ 83 \pi 84 \pi 85 \pi \end{gathered}$	$\begin{gathered} 76 \pi 78 \pi 79 \pi- \\ 83 \pi 85 \pi 86 \pi \end{gathered}$
26 (88)	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 91 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$
27 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 95 \pi 98 \pi 99 \pi \end{aligned}$	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 95 \pi 98 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 95 \pi 98 \pi 100 \pi \end{aligned}$
28 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 91 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$
29 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$
30 (82)	$\begin{array}{r} 80 \pi 81 \pi 82 \pi- \\ 86 \pi 89 \pi 90 \pi \end{array}$	$\begin{gathered} 80 \pi 81 \pi 82 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 81 \pi 82 \pi- \\ 86 \pi 87 \pi 89 \pi \end{gathered}$
31 (88)	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 94 \pi 95 \pi \end{gathered}$	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$
32 (83)	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{aligned} & 79 \pi 82 \pi 83 \pi- \\ & 86 \pi 88 \pi 00 \pi \end{aligned}$	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$
33 (88)	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 92 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{array}{r} 85 \pi 87 \pi 88 \pi- \\ 92 \pi 94 \pi 97 \pi \end{array}$	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 92 \pi 94 \pi 96 \pi \end{aligned}$
34 (75)	$\begin{gathered} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 81 \pi 82 \pi \\ 102 \pi 104 \pi 105 \end{gathered}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 80 \pi 81 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$
$\begin{gathered} 35 \\ (105) \end{gathered}$	$\begin{gathered} \pi- \\ 109 \pi 112 \pi 113 \\ \pi \end{gathered}$	$\begin{gathered} 102 \pi 104 \pi 105 \pi- \\ 109 \pi 112 \pi 113 \pi \end{gathered}$	$\begin{gathered} 102 \pi 104 \pi 105 \pi- \\ 109 \pi 110 \pi 112 \pi \end{gathered}$
36 (83)	$\begin{aligned} & 79 \pi 82 \pi 83 \pi- \\ & 87 \pi 88 \pi 89 \pi \end{aligned}$	$\begin{aligned} & 79 \pi 82 \pi 83 \pi- \\ & 87 \pi 88 \pi 89 \pi \end{aligned}$	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 87 \pi 88 \pi \end{gathered}$
37 (75)	$\begin{gathered} 73 \pi 74 \pi 75 \pi- \\ 79 \pi 81 \pi 82 \pi \end{gathered}$	$\begin{gathered} 73 \pi 74 \pi 75 \pi- \\ 81 \pi 82 \pi 83 \pi \end{gathered}$	$\begin{gathered} 73 \pi 74 \pi 75 \pi- \\ 79 \pi 82 \pi 84 \pi \end{gathered}$
38 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 88 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$
39 (83)	$\begin{array}{r} 80 \pi 82 \pi 83 \pi- \\ 87 \pi 90 \pi 91 \pi \end{array}$	$\begin{array}{r} 80 \pi 82 \pi 83 \pi- \\ 90 \pi 91 \pi 92 \pi \end{array}$	$\begin{aligned} & 80 \pi 82 \pi 83 \pi- \\ & 87 \pi 90 \pi 91 \pi \end{aligned}$
40 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 97 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{gathered} 89 \pi 91 \pi 92 \pi- \\ 99 \pi 100 \pi 101 \pi \end{gathered}$	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 97 \pi 99 \pi 100 \pi \end{aligned}$
41 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 96 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{gathered} 89 \pi 91 \pi 92 \pi- \\ 99 \pi 100 \pi 101 \pi \end{gathered}$	$\begin{gathered} 89 \pi 91 \pi 92 \pi- \\ 96 \pi 100 \pi 102 \pi \end{gathered}$
42 (87)	$\begin{array}{r} 84 \pi 86 \pi 87 \pi- \\ 90 \pi 93 \pi 94 \pi \end{array}$	$\begin{aligned} & 84 \pi 86 \pi 87 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{array}{r} 84 \pi 86 \pi 87 \pi- \\ 90 \pi 93 \pi 94 \pi \end{array}$
43 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 87 \pi 89 \pi \end{gathered}$	$\begin{aligned} & 80 \pi 82 \pi 83 \pi- \\ & 89 \pi 90 \pi 91 \pi \end{aligned}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 87 \pi 90 \pi \end{gathered}$

Table 11: Local Molecular Orbitals of atoms 8, 9, 10, and 13.

Mol.	$\text { Atom } 8\left(\mathbf{s p}^{2}\right.$ C)	Atom $9\left(\mathbf{s p}^{2} \mathbf{N}\right)$	Atom 10 ($\mathbf{s p}^{3} \mathbf{C}$)	$\text { Atom } 13\left(\mathrm{sp}^{3}\right.$ C)
1 (67)	$65 \pi 66 \pi 67 \pi-$	$65 \pi 66 \pi 67 \pi$ -	61ه65б67б-	$56 \sigma 58 \sigma 63 \sigma-$
	$71 \pi 72 \pi 73 \pi$	$71 \pi 72 \pi 73 \pi$	$70 \sigma 75 \sigma 78 \sigma$	$68 \sigma 70 \sigma 76 \sigma$
2 (71)	$68 \pi 70 \pi 71 \pi$ -	$68 \pi 70 \pi 71 \pi$ -	$65 \sigma 68 \sigma 71 \sigma$ -	62 $663 \sigma 67 \sigma$ -
	$74 \pi 77 \pi 78 \pi$	$74 \pi 76 \pi 77 \pi$	75\%78б80б	$72 \sigma 73 \sigma 75 \sigma$
3 (75)	$72 \pi 74 \pi 75 \pi$ -	$72 \pi 74 \pi 75 \pi$ -	69\%72ه75б-	64б66б71ه-
	$78 \pi 80 \pi 81 \pi$	$78 \pi 80 \pi 82 \pi$	$79 \sigma 81 \sigma 85 \sigma$	76б77б79
4 (71)	$68 \pi 70 \pi 71 \pi$ -	$69 \pi 70 \pi 71 \pi$ -	$65 \sigma 68 \sigma 71 \sigma$ -	62б63б67б-
	$74 \pi 75 \pi 77 \pi$	$75 \pi 77 \pi 78 \pi$	$74 \sigma 79 \sigma 81 \sigma$	72б80б81 σ
5 (75)	$73 \pi 74 \pi 75 \pi$ -	$73 \pi 74 \pi 75 \pi-$	69 $73 \sigma 75 \sigma$ -	64б67б71 σ -
	$78 \pi 79 \pi 80 \pi$	$79 \pi 81 \pi 83 \pi$	80б82б84б	$76 \sigma 78 \sigma 80 \sigma$

6 (84)	$\begin{gathered} 82 \pi 83 \pi 84 \pi- \\ 88 \pi 90 \pi 92 \pi \end{gathered}$	$\begin{gathered} 82 \pi 83 \pi 84 \pi- \\ 88 \pi 90 \pi 92 \pi \end{gathered}$	$\begin{aligned} & 78 \sigma 82 \sigma 84 \sigma- \\ & 89 \sigma 91 \sigma 93 \sigma \end{aligned}$	$\begin{aligned} & 73 \sigma 77 \sigma 80 \sigma- \\ & 85 \sigma 87 \sigma 89 \sigma \end{aligned}$
7 (71)	$\begin{array}{r} 68 \pi 70 \pi 71 \pi- \\ 74 \pi 75 \pi 76 \pi \end{array}$	$\begin{array}{r} 68 \pi 70 \pi 71 \pi- \\ 75 \pi 76 \pi 77 \pi \end{array}$	$\begin{aligned} & 65 \sigma 68 \sigma 71 \sigma- \\ & 74 \sigma 79 \sigma 82 \sigma \end{aligned}$	$\begin{aligned} & 62 \sigma 63 \sigma 67 \sigma- \\ & 72 \sigma 73 \sigma 80 \sigma \end{aligned}$
8 (71)	$\begin{gathered} 68 \pi 70 \pi 71 \pi- \\ 75 \pi 76 \pi 77 \pi \end{gathered}$	$\begin{gathered} 68 \pi 70 \pi 71 \pi- \\ 75 \pi 76 \pi 77 \pi \end{gathered}$	$\begin{gathered} 65 \sigma 68 \sigma 71 \sigma- \\ 74 \sigma 79 \sigma 81 \sigma \end{gathered}$	$\begin{aligned} & 62 \sigma 63 \sigma 67 \sigma- \\ & 72 \sigma 74 \sigma 80 \sigma \end{aligned}$
9 (71)	$\begin{gathered} 69 \pi 70 \pi 71 \pi- \\ 75 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 69 \pi 70 \pi 71 \pi- \\ 75 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 65 \sigma 69 \sigma 71 \sigma- \\ 74 \sigma 79 \sigma 82 \sigma \end{gathered}$	$\begin{gathered} 61 \sigma 63 \sigma 67 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$
10 (75)	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 79 \pi 82 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 79 \pi 82 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 68 \sigma 72 \sigma 75 \sigma- \\ & 78 \sigma 84 \sigma 86 \sigma \end{aligned}$	$\begin{aligned} & 63 \sigma 64 \sigma 71 \sigma- \\ & 76 \sigma 78 \sigma 80 \sigma \end{aligned}$
11 (84)	$\begin{gathered} 81 \pi 83 \pi 84 \pi- \\ 88 \pi 91 \pi 92 \pi \end{gathered}$	$\begin{gathered} 81 \pi 83 \pi 84 \pi- \\ 88 \pi 91 \pi 92 \pi \end{gathered}$	$\begin{gathered} 77 \sigma 81 \sigma 84 \sigma- \\ 87 \sigma 93 \sigma 95 \sigma \end{gathered}$	$\begin{aligned} & 72 \sigma 74 \sigma 79 \sigma- \\ & 85 \sigma 87 \sigma 89 \sigma \end{aligned}$
12 (71)	$\begin{array}{r} 68 \pi 70 \pi 71 \pi- \\ 74 \pi 75 \pi 76 \pi \end{array}$	$\begin{gathered} 68 \pi 70 \pi 71 \pi- \\ 75 \pi 76 \pi 77 \pi \end{gathered}$	$\begin{gathered} 65 \sigma 68 \sigma 71 \sigma- \\ 74 \sigma 79 \sigma 82 \sigma \end{gathered}$	$\begin{gathered} 60 \sigma 63 \sigma 69 \sigma- \\ 72 \sigma 80 \sigma 81 \sigma \end{gathered}$
13 (75)	$\begin{gathered} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 79 \pi 80 \pi \end{gathered}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 79 \pi 80 \pi 81 \pi \end{aligned}$	$\begin{gathered} 69 \sigma 72 \sigma 75 \sigma- \\ 78 \sigma 82 \sigma 83 \sigma \end{gathered}$	$\begin{aligned} & 65 \sigma 67 \sigma 73 \sigma- \\ & 76 \sigma 77 \sigma 84 \sigma \end{aligned}$
14 (71)	$\begin{gathered} 69 \pi 70 \pi 71 \pi- \\ 74 \pi 75 \pi 76 \pi \end{gathered}$	$\begin{gathered} 69 \pi 70 \pi 71 \pi- \\ 75 \pi 76 \pi 77 \pi \end{gathered}$	$\begin{gathered} 65 \sigma 68 \sigma 71 \sigma- \\ 74 \sigma 79 \sigma 81 \sigma \end{gathered}$	$\begin{aligned} & 61 \sigma 62 \sigma 69 \sigma- \\ & 72 \sigma 80 \sigma 81 \sigma \end{aligned}$
15 (79)	$\begin{aligned} & 76 \pi 78 \pi 79 \pi- \\ & 82 \pi 83 \pi 84 \pi \end{aligned}$	$\begin{aligned} & 76 \pi 78 \pi 79 \pi- \\ & 83 \pi 84 \pi 85 \pi \end{aligned}$	$\begin{aligned} & 73 \sigma 76 \sigma 79 \sigma- \\ & 82 \sigma 86 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 65 \sigma 67 \sigma 77 \sigma- \\ & 80 \sigma 81 \sigma 88 \sigma \end{aligned}$
16 (75)	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 79 \pi 82 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 73 \pi 74 \pi 75 \pi- \\ & 79 \pi 82 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 68 \sigma 72 \sigma 75 \sigma- \\ & 78 \sigma 84 \sigma 86 \sigma \end{aligned}$	$\begin{aligned} & 64 \sigma 66 \sigma 73 \sigma- \\ & 76 \sigma 78 \sigma 80 \sigma \end{aligned}$
17 (84)	$\begin{gathered} 81 \pi 83 \pi 84 \pi- \\ 88 \pi 91 \pi 92 \pi \end{gathered}$	$\begin{gathered} 81 \pi 83 \pi 84 \pi- \\ 88 \pi 91 \pi 92 \pi \end{gathered}$	$\begin{aligned} & 77 \sigma 81 \sigma 84 \sigma- \\ & 87 \sigma 93 \sigma 95 \sigma \end{aligned}$	$\begin{aligned} & 72 \sigma 74 \sigma 82 \sigma- \\ & 85 \sigma 87 \sigma 89 \sigma \end{aligned}$
18 (78)	$\begin{aligned} & 76 \pi 77 \pi 78 \pi- \\ & 82 \pi 83 \pi 85 \pi \end{aligned}$	$\begin{aligned} & 76 \pi 77 \pi 78 \pi- \\ & 83 \pi 85 \pi 86 \pi \end{aligned}$	$\begin{aligned} & 69 \sigma 76 \sigma 78 \sigma- \\ & 82 \sigma 87 \sigma 89 \sigma \end{aligned}$	$\begin{aligned} & 65 \sigma 66 \sigma 72 \sigma- \\ & 79 \sigma 81 \sigma 88 \sigma \end{aligned}$
19 (79)	$\begin{gathered} 76 \pi 78 \pi 79 \pi- \\ 82 \pi 84 \pi 86 \pi \end{gathered}$	$\begin{aligned} & 76 \pi 78 \pi 79 \pi- \\ & 82 \pi 84 \pi 86 \pi \end{aligned}$	$\begin{aligned} & 73 \sigma 76 \sigma 79 \sigma- \\ & 83 \sigma 85 \sigma 86 \sigma \end{aligned}$	$\begin{aligned} & 70 \sigma 71 \sigma 75 \sigma- \\ & 80 \sigma 83 \sigma 87 \sigma \end{aligned}$
20 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 90 \pi \end{gathered}$	$\begin{aligned} & 76 \sigma 80 \sigma 83 \sigma- \\ & 87 \sigma 89 \sigma 93 \sigma \end{aligned}$	$\begin{aligned} & 75 \sigma 78 \sigma 79 \sigma- \\ & 84 \sigma 87 \sigma 91 \sigma \end{aligned}$
21 (88)	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 92 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 92 \pi 94 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 81 \sigma 85 \sigma 88 \sigma- \\ & 93 \sigma 95 \sigma 98 \sigma \end{aligned}$	$\begin{gathered} 76 \sigma 77 \sigma 84 \sigma- \\ 89 \sigma 90 \sigma 91 \sigma \end{gathered}$
22 (75)	$\begin{array}{r} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 81 \pi 82 \pi \end{array}$	$\begin{gathered} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 81 \pi 82 \pi \end{gathered}$	$\begin{aligned} & 69 \sigma 72 \sigma 75 \sigma- \\ & 79 \sigma 82 \sigma 84 \sigma \end{aligned}$	$\begin{gathered} 63 \sigma 65 \sigma 71 \sigma- \\ 76 \sigma 77 \sigma 79 \sigma \end{gathered}$
23 (75)	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 80 \pi 81 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 80 \pi 81 \pi \end{aligned}$	$\begin{gathered} 69 \sigma 72 \sigma 75 \sigma- \\ 79 \sigma 82 \sigma 84 \sigma \end{gathered}$	$\begin{gathered} 65 \sigma 66 \sigma 71 \sigma- \\ 76 \sigma 77 \sigma 79 \sigma \end{gathered}$
24 (75)	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 74 \pi 75 \pi- \\ & 78 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{gathered} 69 \sigma 72 \sigma 75 \sigma- \\ 79 \sigma 82 \sigma 83 \sigma \end{gathered}$	$\begin{aligned} & 64 \sigma 66 \sigma 71 \sigma- \\ & 76 \sigma 77 \sigma 82 \sigma \end{aligned}$
25 (79)	$\begin{gathered} 76 \pi 78 \pi 79 \pi- \\ 83 \pi 84 \pi 85 \pi \end{gathered}$	$\begin{aligned} & 76 \pi 78 \pi 79 \pi- \\ & 83 \pi 85 \pi 86 \pi \end{aligned}$	$\begin{aligned} & 73 \sigma 76 \sigma 79 \sigma- \\ & 81 \sigma 84 \sigma 87 \sigma \end{aligned}$	$\begin{gathered} 69 \sigma 70 \sigma 75 \sigma- \\ 80 \sigma 81 \sigma 82 \sigma \end{gathered}$
26 (88)	$\begin{aligned} & 85 \pi 87 \pi 88 \pi- \\ & 91 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{array}{r} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{array}$	$\begin{gathered} 80 \sigma 85 \sigma 88 \sigma- \\ 92 \sigma 96 \sigma 98 \sigma \end{gathered}$	$\begin{aligned} & 76 \sigma 77 \sigma 83 \sigma- \\ & 89 \sigma 90 \sigma 92 \sigma \end{aligned}$
27 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 95 \pi 98 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 95 \pi 98 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 84 \sigma 89 \sigma 92 \sigma- \\ & 96 \sigma 99 \sigma 101 \sigma \end{aligned}$	$\begin{aligned} & 81 \sigma 82 \sigma 87 \sigma- \\ & 93 \sigma 94 \sigma 96 \sigma \end{aligned}$
28 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 91 \pi \end{gathered}$	$\begin{aligned} & 75 \sigma 80 \sigma 83 \sigma- \\ & 87 \sigma 90 \sigma 92 \sigma \end{aligned}$	$\begin{aligned} & 71 \sigma 73 \sigma 79 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$
29 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 90 \pi \end{gathered}$	$\begin{aligned} & 76 \sigma 80 \sigma 83 \sigma- \\ & 87 \sigma 89 \sigma 94 \sigma \end{aligned}$	$\begin{aligned} & 73 \sigma 75 \sigma 79 \sigma- \\ & 84 \sigma 85 \sigma 92 \sigma \end{aligned}$
30 (82)	$\begin{gathered} 80 \pi 81 \pi 82 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{gathered} 80 \pi 81 \pi 82 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{aligned} & 73 \sigma 80 \sigma 82 \sigma- \\ & 87 \sigma 90 \sigma 92 \sigma \end{aligned}$	$\begin{gathered} 69 \sigma 70 \sigma 75 \sigma- \\ 83 \sigma 84 \sigma 85 \sigma \end{gathered}$
31 (88)	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$	$\begin{gathered} 85 \pi 87 \pi 88 \pi- \\ 91 \pi 95 \pi 96 \pi \end{gathered}$	$\begin{gathered} 80 \sigma 85 \sigma 88 \sigma- \\ 92 \sigma 96 \sigma 98 \sigma \end{gathered}$	$\begin{aligned} & 78 \sigma 81 \sigma 86 \sigma- \\ & 89 \sigma 90 \sigma 92 \sigma \end{aligned}$
32 (83)	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 88 \pi 90 \pi \end{gathered}$	$\begin{aligned} & 76 \sigma 79 \sigma 83 \sigma- \\ & 87 \sigma 89 \sigma 94 \sigma \end{aligned}$	$\begin{aligned} & 72 \sigma 73 \sigma 81 \sigma- \\ & 84 \sigma 85 \sigma 93 \sigma \end{aligned}$
33 (88)	$85 \pi 87 \pi 88 \pi$ -	$85 \pi 87 \pi 88 \pi$ -	82の85 688 -	$77 \sigma 81 \sigma 84 \sigma$ -

	$92 \pi 94 \pi 96 \pi$	$92 \pi 94 \pi 97 \pi$	93\%97\%100	89\%90б91б
34 (75)	$\begin{gathered} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 81 \pi 82 \pi \\ 102 \pi 104 \pi 105 \end{gathered}$	$\begin{array}{r} 72 \pi 74 \pi 75 \pi- \\ 78 \pi 81 \pi 82 \pi \end{array}$	$\begin{gathered} 69 \sigma 72 \sigma 75 \sigma- \\ 79 \sigma 82 \sigma 83 \sigma \end{gathered}$	$\begin{gathered} 64 \sigma 65 \sigma 71 \sigma- \\ 76 \sigma 79 \sigma 83 \sigma \end{gathered}$
$\begin{gathered} 35 \\ (105) \end{gathered}$	$\begin{gathered} \pi- \\ 109 \pi 110 \pi 112 \\ \pi \end{gathered}$	$\begin{aligned} & 102 \pi 104 \pi 105 \pi- \\ & 109 \pi 112 \pi 114 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 102 \sigma 105 \sigma- \\ & 110 \sigma 114 \sigma 116 \sigma \end{aligned}$	$\begin{gathered} 91 \sigma 92 \sigma 99 \sigma- \\ 106 \sigma 107 \sigma 108 \sigma \end{gathered}$
36 (83)	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 86 \pi 87 \pi 88 \pi \end{gathered}$	$\begin{gathered} 79 \pi 82 \pi 83 \pi- \\ 87 \pi 88 \pi 89 \pi \end{gathered}$	$\begin{gathered} 76 \sigma 79 \sigma 83 \sigma- \\ 86 \sigma 89 \sigma 90 \sigma \end{gathered}$	$\begin{aligned} & 72 \sigma 74 \sigma 81 \sigma- \\ & 84 \sigma 85 \sigma 92 \sigma \end{aligned}$
37 (75)	$\begin{gathered} 73 \pi 74 \pi 75 \pi- \\ 79 \pi 82 \pi 83 \pi \end{gathered}$	$\begin{gathered} 73 \pi 74 \pi 75 \pi- \\ 79 \pi 81 \pi 82 \pi \end{gathered}$	$\begin{aligned} & 69 \sigma 73 \sigma 74 \sigma- \\ & 78 \sigma 80 \sigma 81 \sigma \end{aligned}$	$\begin{aligned} & 61 \sigma 65 \sigma 70 \sigma- \\ & 76 \sigma 78 \sigma 84 \sigma \end{aligned}$
38 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 90 \pi 91 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{gathered}$	$\begin{aligned} & 77 \sigma 80 \sigma 82 \sigma- \\ & 87 \sigma 88 \sigma 89 \sigma \end{aligned}$	$\begin{aligned} & 70 \sigma 73 \sigma 78 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$
39 (83)	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 87 \pi 90 \pi 91 \pi \end{gathered}$	$\begin{gathered} 80 \pi 82 \pi 83 \pi- \\ 87 \pi 91 \pi 92 \pi \end{gathered}$	$77 \sigma 80 \sigma 82 \sigma-$ 86 $89 \sigma 90 \sigma$	$\begin{aligned} & 69 \sigma 76 \sigma 78 \sigma- \\ & 84 \sigma 86 \sigma 88 \sigma \end{aligned}$
40 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 97 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{gathered} 89 \pi 91 \pi 92 \pi- \\ 97 \pi 100 \pi 101 \pi \end{gathered}$	$\begin{aligned} & 85 \sigma 89 \sigma 91 \sigma- \\ & 95 \sigma 98 \sigma 99 \sigma \end{aligned}$	81б86б87б- $93 \sigma 95 \sigma 96 \sigma$
41 (92)	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 96 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 89 \pi 91 \pi 92 \pi- \\ & 96 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 85 \sigma 89 \sigma 91 \sigma- \\ & 95 \sigma 99 \sigma 101 \sigma \end{aligned}$	$\begin{gathered} 81 \sigma 84 \sigma 90 \sigma- \\ 93 \sigma 95 \sigma 97 \sigma \end{gathered}$
42 (87)	$\begin{aligned} & 84 \pi 86 \pi 87 \pi- \\ & 90 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{array}{r} 84 \pi 86 \pi 87 \pi- \\ 90 \pi 93 \pi 94 \pi \end{array}$	$\begin{gathered} 81 \sigma 84 \sigma 86 \sigma- \\ 91 \sigma 93 \sigma 94 \sigma \end{gathered}$	$\begin{aligned} & 74 \sigma 78 \sigma 82 \sigma- \\ & 88 \sigma 89 \sigma 95 \sigma \end{aligned}$
43 (83)	$\begin{array}{r} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 87 \pi 90 \pi \end{array}$	$\begin{array}{r} 80 \pi 82 \pi 83 \pi- \\ 86 \pi 89 \pi 90 \pi \end{array}$	$\begin{aligned} & 77 \sigma 80 \sigma 82 \sigma- \\ & 87 \sigma 89 \sigma 91 \sigma \end{aligned}$	$\begin{gathered} 68 \sigma 73 \sigma 78 \sigma- \\ 84 \sigma 85 \sigma 87 \sigma \\ \hline \end{gathered}$

Table 12. Local Molecular Orbitals of atoms 14, 16, 17, and 18.

Mol.	Atom 14 (sp ${ }^{2}$ C)	Atom 16 ($\mathbf{s p}^{2}$ C)	Atom 17 (sp ${ }^{2}$ C)	Atom 18 ($\mathrm{sp}^{2} \mathrm{C}$)
1 (67)	$59 \sigma 63 \pi 65 \pi$ -	59\%63 $664-$	$59 \sigma 63 \pi 65 \pi$ -	59б63 $664-$
	$68 \pi 70 \pi 74 \pi$	$68 \pi 69 \pi 70 \pi$	$68 \pi 69 \pi 70 \pi$	$68 \pi 69 \pi 70 \pi$
2 (71)	$63 \pi 67 \pi 69 \pi$ -	$63 \pi 67 \pi 69 \pi-$	$63 \pi 67 \pi 69 \pi$ -	$6263 \pi 69 \pi$ -
	$72 \pi 73 \pi 75 \pi$	$72 \pi 73 \pi 76 \sigma$	$72 \pi 73 \pi 75 \pi$	$72 \pi 73 \pi 75 \pi$
3 (75)	$67 \pi 71 \pi 73 \pi-$	$67 \pi 71 \pi 73 \pi-$	$67 \pi 71 \pi 73 \pi-$	$6667 \pi 73 \pi$ -
	$76 \pi 77 \pi 79 \pi$	$76 \pi 77 \pi 82 \pi$	$76 \pi 77 \pi 79 \pi$	$76 \pi 77 \pi 79 \pi$
4 (71)	$63 \sigma 67 \pi 69 \pi-$	$67 \pi 68 \pi 69 \pi$ -	$63 \sigma 67 \pi 69 \pi-$	$67 \pi 68 \pi 69 \pi-$
	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 78 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$
5 (75)	$67 \sigma 71 \pi 72 \pi-$	$67 \sigma 71 \pi 72 \pi$ -	$67 \sigma 71 \pi 72 \pi-$	$67 \sigma 71 \pi 72 \pi$ -
	$76 \pi 77 \pi 78 \sigma$	$76 \pi 77 \pi 78 \sigma$	$76 \pi 77 \pi 78 \sigma$	$76 \pi 7780 \pi$
6 (84)	$77 \sigma 80 \pi 81 \pi$ -	$77 \sigma 80 \pi 81 \pi$ -	$77 \sigma 80 \pi 81 \pi$ -	$75 \pi 80 \pi 81 \pi$ -
	$85 \pi 86 \pi 87 \sigma$	$85 \pi 86 \pi 87 \sigma$	$85 \pi 86 \pi 87 \sigma$	$85 \pi 86 \pi 89 \pi$
7 (71)	$63 \pi 67 \pi 69 \pi$ -	$62 \sigma 63 \sigma 69 \pi$ -	63? $67 \pi 69 \pi$ -	$63 \pi 67 \pi 69 \pi$ -
	$72 \pi 74 \pi 78$?	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 76 \pi$
8 (71)	$63 \sigma 67 \pi 69 \pi-$	$63 \sigma 68 \pi 69 \pi$ -	$63 \sigma 67 \pi 69 \pi-$	$67 \pi 68 \pi 69 \pi$ -
	$72 \pi 74 \pi 78$ б	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$
9 (71)	$67 \pi 68 \pi 69 \pi$ -	$63 \sigma 67 \pi 68 \pi$ -	$67 \pi 68 \pi 69 \pi-$	$67 \pi 68 \pi 69 \pi-$
	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 76 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$
10 (75)	$70 \sigma 71 \pi 73 \pi-$	$70 \sigma 71 \pi 73 \pi-$	$70 \sigma 71 \pi 73 \pi-$	$66 \pi 70 \sigma 73 \pi-$
	$76 \pi 78 \pi 80 \sigma$	$76 \pi 77 \pi 80 \sigma$	$76 \pi 77 \pi 78 \pi$	$76 \pi 77 \pi 78 \pi$
11 (84)	$77 \pi 79 \pi 82 \pi$ -	$79 \pi 80 \sigma 82 \pi$ -	$79 \pi 80 \sigma 82 \pi$ -	$77 \pi 80 \sigma 82 \pi-$
	$85 \pi 87 \pi 89 \sigma$	$85 \pi 86 \pi 87 \pi$	$85 \pi 86 \pi 87 \pi$	$85 \pi 86 \pi 87 \pi$
12 (71)	$62 \pi 63 \sigma 69 \pi-$	$63 \sigma 67 \pi 69 \pi$ -	$62 \sigma 63 \sigma 69 \pi$ -	$63 \sigma 67 \pi 69 \pi-$
	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 76 \pi$
13 (75)	$68 \sigma 71 \pi 73 \pi-$	$68 \sigma 71 \pi 73 \pi$ -	$67 \pi 68$ бл73	68 б71 773π -
	$76 \pi 77 \pi 78 \pi$			
14 (71)	$63 \sigma 68 \pi 69 \pi$ -	$67 \pi 68 \pi 69 \pi$ -	$63 \sigma 68 \pi 69 \pi$ -	$67 \pi 68 \pi 69 \pi-$
	$72 \pi 74 \pi 78 \sigma$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$	$72 \pi 73 \pi 74 \pi$

15 (79)	$\begin{aligned} & \hline 73 \pi 75 \pi 77 \pi- \\ & 80 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & \hline 71 \sigma 75 \pi 77 \pi- \\ & 80 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & \hline 72 \pi 73 \pi 77 \pi- \\ & 80 \pi 81 \pi 82 \pi \end{aligned}$	$\begin{aligned} & 71 \sigma 75 \pi 77 \pi- \\ & 80 \pi 81 \pi 82 \pi \end{aligned}$
16 (75)	$\begin{gathered} 66 \pi 72 \pi 73 \pi- \\ 76 \pi 78 \pi 83 \pi \end{gathered}$	$\begin{gathered} 71 \pi 72 \pi 73 \pi- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 70 \sigma 72 \pi 73 \pi- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 71 \pi 72 \pi 73 \pi- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$
17 (84)	$\begin{aligned} & 76 \pi 77 \pi 82 \pi- \\ & 85 \pi 87 \pi 92 \pi \end{aligned}$	$\begin{gathered} 79 \pi 80 \sigma 82 \pi- \\ 85 \pi 86 \pi 87 \pi \end{gathered}$	$\begin{gathered} 77 \pi 80 \sigma 82 \pi- \\ 85 \pi 86 \pi 87 \pi \end{gathered}$	$\begin{gathered} 79 \pi 80 \sigma 82 \pi- \\ 85 \pi 86 \pi 87 \pi \end{gathered}$
18 (78)	$\begin{aligned} & 65 \sigma 66 \sigma 72 \pi- \\ & 79 \pi 80 \pi 81 \pi \end{aligned}$	$\begin{aligned} & 73 \sigma 74 \pi 75 \sigma- \\ & 79 \pi 80 \pi 86 ? \end{aligned}$	$\begin{gathered} 66 \sigma 72 \pi 73 \sigma- \\ 79 \pi 80 \pi 81 \pi \end{gathered}$	$\begin{aligned} & 73 \sigma 74 \pi 75 \sigma- \\ & 79 \pi 80 \pi 86 ? \end{aligned}$
19 (79)	$\begin{aligned} & 75 \pi 76 \pi 77 \pi- \\ & 80 \pi 81 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 75 \pi 76 \pi 77 \pi- \\ & 80 \pi 81 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 75 \pi 76 \pi 77 \pi- \\ & 80 \pi 81 \pi 83 \pi \end{aligned}$	$\begin{aligned} & 75 \pi 76 \pi 77 \pi- \\ & 80 \pi 81 \pi 83 \pi \end{aligned}$
20 (83)	$\begin{gathered} 78 \sigma 79 \pi 80 \pi- \\ 84 \pi 85 \pi 87 \pi \end{gathered}$	$\begin{aligned} & 79 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 79 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 79 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$
21 (88)	$\begin{aligned} & 80 \pi 84 \pi 86 \pi- \\ & 89 \pi 90 \pi 91 \sigma \end{aligned}$	$\begin{aligned} & 83 \sigma 84 \pi 86 \pi- \\ & 89 \pi 90 \pi 91 \sigma \end{aligned}$	$\begin{aligned} & 77 \sigma 83 \sigma 84 \pi- \\ & 89 \pi 90 \pi 91 \sigma \end{aligned}$	$\begin{aligned} & 83 \sigma 84 \pi 86 \pi- \\ & 89 \pi 90 \pi 91 \sigma \end{aligned}$
22 (75)	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{gathered} 65 \sigma 67 \pi 71 \pi- \\ 76 \pi 77 \pi 79 \pi \end{gathered}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$
23 (75)	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{gathered} 66 \sigma 67 \pi 73 \pi- \\ 76 \pi 77 \pi 79 \pi \end{gathered}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 80 \sigma \end{aligned}$
24 (75)	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 80 \sigma \end{aligned}$	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{aligned} & 66 \sigma 67 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$
25 (79)	$\begin{aligned} & 72 \pi 75 \pi 77 \pi- \\ & 80 \pi 82 \pi 87 \sigma \end{aligned}$	$\begin{aligned} & 72 \pi 75 \pi 77 \pi- \\ & 80 \pi 82 \pi 84 \pi \end{aligned}$	$\begin{aligned} & 72 \pi 75 \pi 77 \pi- \\ & 80 \pi 82 \pi 90 \sigma \end{aligned}$	$\begin{aligned} & 70 \sigma 72 \pi 77 \pi- \\ & 80 \pi 82 \pi 84 \pi \end{aligned}$
26 (88)	$\begin{aligned} & 82 \pi 83 \pi 86 \pi- \\ & 89 \pi 90 \pi 92 \pi \end{aligned}$	$\begin{aligned} & 82 \pi 8486 \pi- \\ & 89 \pi 90 \pi 91 \sigma \end{aligned}$	$\begin{aligned} & 83 \pi 8486 \pi- \\ & 89 \pi 90 \pi 92 \pi \end{aligned}$	$\begin{gathered} 82 \pi 83 \pi 86 \pi- \\ 89 \pi 90 \pi 92 \pi \end{gathered}$
27 (92)	$\begin{aligned} & 86 \pi 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 86 \pi 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 97 \sigma \end{aligned}$	$\begin{aligned} & 87 \pi 88 \sigma 90 \pi- \\ & 93 \pi 94 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 86 \pi 88 \sigma 90 \pi- \\ & 93 \pi 94 \pi 96 \pi \end{aligned}$
28 (83)	$\begin{aligned} & 78 \sigma 79 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 78 \sigma 79 \pi 81 \pi- \\ & 84 \pi 85 \pi 88 \sigma \end{aligned}$	$\begin{aligned} & 78 \sigma 79 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 76 \pi 78 \sigma 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$
29 (83)	$\begin{gathered} 78 \pi 79 \pi 81 \pi- \\ 84 \pi 87 \pi 90 \pi \end{gathered}$	$\begin{gathered} 75 \sigma 78 \pi 81 \pi- \\ 84 \pi 85 \pi 87 \pi \end{gathered}$	$\begin{aligned} & 78 \pi 79 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 78 \pi 79 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$
30 (82)	$\begin{aligned} & 75 \pi 77 \pi 79 \pi- \\ & 83 \pi 84 \pi 87 \pi \end{aligned}$	$\begin{gathered} 70 \pi 76 \sigma 79 \pi- \\ 83 \pi 84 \pi 85 \pi \end{gathered}$	$\begin{aligned} & 77 \pi 78 \sigma 79 \pi- \\ & 83 \pi 84 \pi 85 \pi \end{aligned}$	$\begin{aligned} & 75 \pi 77 \pi 79 \pi- \\ & 83 \pi 84 \pi 85 \pi \end{aligned}$
31 (88)	$\begin{aligned} & 81 \pi 82 \pi 86 \pi- \\ & 89 \pi 90 \pi 92 \pi \end{aligned}$	$\begin{gathered} 83 \sigma 84 \sigma 86 \pi- \\ 89 \pi 90 \pi 92 \pi \end{gathered}$	$\begin{gathered} 83 \sigma 84 \sigma 86 \pi- \\ 89 \pi 90 \pi 92 \sigma \end{gathered}$	$\begin{gathered} 83 \sigma 84 \sigma 86 \pi- \\ 89 \pi 90 \pi 92 \sigma \end{gathered}$
32 (83)	$\begin{aligned} & 78 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 78 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 78 \pi 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 75 \sigma 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 90 \pi \end{aligned}$
33 (88)	$\begin{gathered} 81 \sigma 84 \pi 86 \pi- \\ 89 \pi 90 \pi 91 \pi \end{gathered}$	$\begin{gathered} 81 \sigma 84 \pi 86 \pi- \\ 89 \pi 90 \pi 91 \pi \end{gathered}$	$\begin{aligned} & 81 \sigma 84 \pi 86 \pi- \\ & 89 \pi 90 \pi 91 \pi \end{aligned}$	$\begin{aligned} & 81 \pi 84 \pi 86 \pi- \\ & 89 \pi 90 \pi 91 \pi \end{aligned}$
34 (75)	$\begin{aligned} & 67 \pi 71 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$	$\begin{gathered} 67 \pi 71 \pi 73 \pi- \\ 76 \pi 77 \pi 79 \pi \end{gathered}$	$\begin{gathered} 67 \pi 71 \pi 73 \pi- \\ 76 \pi 77 \pi 79 \pi \end{gathered}$	$\begin{aligned} & 71 \pi 72 \pi 73 \pi- \\ & 76 \pi 77 \pi 79 \pi \end{aligned}$
$\begin{gathered} 35 \\ (105) \end{gathered}$	$\begin{aligned} & 99 \pi 101 \pi 103 \pi- \\ & 106 \pi 107 \pi 108 \sigma \end{aligned}$	$\begin{aligned} & 98 \sigma 101 \pi 103 \pi- \\ & 106 \pi 107 \pi 108 \sigma \end{aligned}$	$\begin{aligned} & 100 \sigma 101 \pi 103 \pi- \\ & 106 \pi 107 \pi 108 \sigma \end{aligned}$	$\begin{aligned} & 100 \sigma 101 \pi 103 \pi- \\ & 106 \pi 107 \pi 108 \sigma \end{aligned}$
36 (83)	$\begin{gathered} 78 \pi 80 \pi 81 \pi \sigma- \\ 84 \pi 86 \pi 87 \pi \end{gathered}$	$\begin{aligned} & 78 \pi 80 \pi 81 \pi \text { - } \\ & 84 \pi 85 \pi 88 \pi \end{aligned}$	$\begin{aligned} & 78 \sigma 80 \pi 81 \pi- \\ & 84 \pi 85 \pi 86 \pi \end{aligned}$	$\begin{gathered} 78 \sigma 80 \pi 81 \pi- \\ 84 \pi 85 \pi 86 \pi \end{gathered}$
37 (75)	$\begin{gathered} 65 \sigma 66 \sigma 70 \pi- \\ 76 \pi 78 \pi 81 \end{gathered}$	$\begin{gathered} 66 \sigma 70 \pi 72 \sigma- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 66 \sigma 70 \pi 71 \sigma- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$	$\begin{gathered} 66 \sigma 70 \pi 72 \sigma- \\ 76 \pi 77 \pi 78 \pi \end{gathered}$
38 (83)	$\begin{aligned} & 74 \pi 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 74 \pi 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 88 \pi \end{aligned}$	$\begin{aligned} & 74 \pi 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$	$\begin{aligned} & 73 \sigma 74 \pi 81 \pi- \\ & 84 \pi 85 \pi 87 \pi \end{aligned}$
39 (83)	$\begin{aligned} & 76 \sigma 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 88 \sigma \end{aligned}$	$\begin{aligned} & 76 \sigma 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 88 \sigma \end{aligned}$	$\begin{aligned} & 76 \sigma 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 88 \sigma \end{aligned}$	$\begin{aligned} & 73 \pi 78 \pi 81 \pi- \\ & 84 \pi 85 \pi 95 \pi \end{aligned}$
40 (92)	$\begin{aligned} & 86 \sigma 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 96 \sigma \end{aligned}$	$\begin{aligned} & 86 \sigma 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 96 \sigma \end{aligned}$	$\begin{aligned} & 86 \sigma 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 96 \sigma \end{aligned}$	$\begin{aligned} & 84 \pi 87 \pi 90 \pi- \\ & 93 \pi 94 \pi 105 \pi \end{aligned}$
41 (92)	$\begin{aligned} & 81 \sigma 84 \pi 90 \pi- \\ & 93 \pi 95 \pi 99 \pi \end{aligned}$	$\begin{aligned} & 86 \pi 87 \sigma 90 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{aligned} & 84 \pi 87 \sigma 90 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$	$\begin{aligned} & 86 \pi 87 \sigma 90 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$
42 (87)	$80 \pi 82 \pi 85 \pi$ -	$80 \pi 82 \pi 85 \pi$ -	$80 \pi 82 \pi 85 \pi$ -	$78 \sigma 80 \pi 85 \pi$ -

	$88 \pi 91 \pi 94 \pi$	$88 \pi 89 \pi 91 \pi$	$88 \pi 89 \pi 91 \pi$	$88 \pi 89 \pi 91 \pi$
$\mathbf{4 3 (8 3)}$	$74 \pi 78 \pi 81 \pi-$	$74 \pi 78 \pi 81 \pi-$	$74 \pi 78 \pi 81 \pi-$	$73 \sigma 74 \pi 81 \pi-$
	$84 \pi 85 \pi 87 \pi$	$84 \pi 85 \pi 88$	$84 \pi 85 \pi 87 \pi$	$84 \pi 85 \pi 87 \pi$

Table 13. Local Molecular Orbitals of atoms 20, 21, and 22.

Mol.	Atom 20 (H)	Atom 21 (H)	Atom 22 (H)
1 (67)	$\begin{gathered} 44 \sigma 49 \sigma 51 \sigma- \\ 68 \sigma 69 \sigma 70 \sigma \end{gathered}$	$\begin{gathered} 43 \sigma 48 \sigma 49 \sigma- \\ 68 \sigma 69 \sigma 70 \sigma \end{gathered}$	$\begin{gathered} \hline 51 \sigma 52 \sigma 61 \sigma- \\ 76 \sigma 78 \sigma 79 \sigma \end{gathered}$
2 (71)	$\begin{aligned} & 47 \sigma 53 \sigma 55 \sigma- \\ & 72 \sigma 73 \sigma 75 \sigma \end{aligned}$	$\begin{aligned} & 49 \sigma 51 \sigma 55 \sigma- \\ & 72 \sigma 73 \sigma 75 \sigma \end{aligned}$	$\begin{gathered} 55 \sigma 56 \sigma 65 \sigma- \\ 79 \sigma 81 \sigma 83 \sigma \end{gathered}$
3 (75)	$\begin{aligned} & 52 \sigma 55 \sigma 57 \sigma- \\ & 76 \sigma 77 \sigma 79 \sigma \end{aligned}$	$\begin{aligned} & 52 \sigma 54 \sigma 56 \sigma- \\ & 76 \sigma 77 \sigma 79 \sigma \end{aligned}$	$\begin{aligned} & 57 \sigma 58 \sigma 69 \sigma- \\ & 84 \sigma 85 \sigma 86 \sigma \end{aligned}$
4 (71)	$\begin{gathered} 43 \sigma 45 \sigma 50 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{aligned} & 45 \sigma 49 \sigma 51 \sigma- \\ & 72 \sigma 73 \sigma 74 \sigma \end{aligned}$	$\begin{aligned} & 54 \sigma 55 \sigma 65 \sigma- \\ & 80 \sigma 83 \sigma 84 \sigma \end{aligned}$
5 (75)	$\begin{gathered} 49 \sigma 52 \sigma 55 \sigma- \\ 76 \sigma 80 \sigma 81 \sigma \end{gathered}$	$\begin{aligned} & 54 \sigma 56 \sigma 58 \sigma- \\ & 76 \sigma 78 \sigma 80 \sigma \end{aligned}$	$\begin{aligned} & 57 \sigma 59 \sigma 69 \sigma- \\ & 85 \sigma 88 \sigma 89 \sigma \end{aligned}$
6 (84)	$\begin{gathered} 65 \sigma 75 \sigma 77 \sigma- \\ 85 \sigma 87 \sigma 89 \sigma \end{gathered}$	$\begin{gathered} 61 \sigma 62 \sigma 65 \sigma- \\ 85 \sigma 88 \sigma 89 \sigma \end{gathered}$	$\begin{gathered} 66 \sigma 67 \sigma 78 \sigma- \\ 94 \sigma 97 \sigma 98 \sigma \end{gathered}$
7 (71)	$\begin{gathered} 48 \sigma 51 \sigma 53 \sigma- \\ 72 \sigma 74 \sigma 76 \sigma \end{gathered}$	$\begin{gathered} 46 \sigma 50 \sigma 52 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{gathered} 53 \sigma 55 \sigma 65 \sigma- \\ 81 \sigma 83 \sigma 84 \sigma \end{gathered}$
8 (71)	$\begin{aligned} & 49 \sigma 50 \sigma 52 \sigma- \\ & 72 \sigma 73 \sigma 74 \sigma \end{aligned}$	$\begin{gathered} 45 \sigma 47 \sigma 49 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{aligned} & 52 \sigma 55 \sigma 65 \sigma- \\ & 80 \sigma 82 \sigma 83 \sigma \end{aligned}$
9 (71)	$\begin{gathered} 46 \sigma 50 \sigma 54 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{gathered} 50 \sigma 52 \sigma 53 \sigma- \\ 72 \sigma 74 \sigma 76 \sigma \end{gathered}$	$\begin{gathered} 54 \sigma 55 \sigma 65 \sigma- \\ 80 \sigma 84 \sigma 85 \sigma \end{gathered}$
10 (75)	$\begin{aligned} & 50 \sigma 53 \sigma 57 \sigma- \\ & 76 \sigma 77 \sigma 78 \sigma \end{aligned}$	$\begin{aligned} & 53 \sigma 54 \sigma 56 \sigma- \\ & 76 \sigma 77 \sigma 78 \sigma \end{aligned}$	$\begin{aligned} & 57 \sigma 58 \sigma 68 \sigma- \\ & 85 \sigma 88 \sigma 89 \sigma \end{aligned}$
11 (84)	$\begin{aligned} & 59 \sigma 62 \sigma 66 \sigma- \\ & 85 \sigma 86 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 59 \sigma 63 \sigma 64 \sigma- \\ & 85 \sigma 86 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 60 \sigma 66 \sigma 67 \sigma- \\ & 94 \sigma 97 \sigma 98 \sigma \end{aligned}$
12 (71)	$\begin{gathered} 45 \sigma 50 \sigma 53 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{aligned} & 46 \sigma 48 \sigma 52 \sigma- \\ & 72 \sigma 73 \sigma 74 \sigma \end{aligned}$	$\begin{aligned} & 53 \sigma 55 \sigma 65 \sigma- \\ & 81 \sigma 83 \sigma 84 \sigma \end{aligned}$
13 (75)	$\begin{gathered} 48 \sigma 53 \sigma 56 \sigma- \\ 76 \sigma 77 \sigma 78 \sigma \end{gathered}$	$\begin{gathered} 48 \sigma 53 \sigma 55 \sigma- \\ 76 \sigma 77 \sigma 78 \sigma \end{gathered}$	$\begin{gathered} 56 \sigma 57 \sigma 69 \sigma- \\ 84 \sigma 86 \sigma 87 \sigma \end{gathered}$
14 (71)	$\begin{gathered} 43 \sigma 45 \sigma 49 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{gathered} 45 \sigma 49 \sigma 51 \sigma- \\ 72 \sigma 73 \sigma 74 \sigma \end{gathered}$	$\begin{gathered} 53 \sigma 55 \sigma 65 \sigma- \\ 80 \sigma 83 \sigma 84 \sigma \end{gathered}$
15 (79)	$\begin{gathered} 50 \sigma 55 \sigma 58 \sigma- \\ 80 \sigma 81 \sigma 82 \sigma \end{gathered}$	$\begin{gathered} 50 \sigma 55 \sigma 57 \sigma- \\ 80 \sigma 81 \sigma 82 \sigma \end{gathered}$	$\begin{gathered} 58 \sigma 59 \sigma 72 \sigma- \\ 88 \sigma 90 \sigma 91 \sigma \end{gathered}$
16 (75)	$\begin{gathered} 53 \sigma 54 \sigma 57 \sigma- \\ 76 \sigma 77 \sigma 78 \sigma \end{gathered}$	$\begin{aligned} & 54 \sigma 55 \sigma 56 \sigma- \\ & 76 \sigma 77 \sigma 78 \sigma \end{aligned}$	$\begin{gathered} 57 \sigma 58 \sigma 68 \sigma- \\ 85 \sigma 88 \sigma 89 \sigma \end{gathered}$
17 (84)	$62 \sigma 63 \sigma 66 \sigma$ $85 \sigma 86 \sigma 87 \sigma$	$\begin{gathered} 62 \sigma 63 \sigma 64 \sigma- \\ 85 \sigma 86 \sigma 87 \sigma \end{gathered}$	$\begin{gathered} 65 \sigma 66 \sigma 67 \sigma- \\ 94 \sigma 98 \sigma 99 \sigma \end{gathered}$
18 (78)	$\begin{aligned} & 51 \sigma 52 \sigma 57 \sigma- \\ & 79 \sigma 80 \sigma 81 \sigma \end{aligned}$	$\begin{aligned} & 52 \sigma 57 \sigma 58 \sigma- \\ & 80 \sigma 81 \sigma 82 \sigma \end{aligned}$	$\begin{aligned} & 59 \sigma 61 \sigma 69 \sigma- \\ & 88 \sigma 92 \sigma 93 \sigma \end{aligned}$
19 (79)	$\begin{aligned} & 50 \sigma 54 \sigma 59 \sigma- \\ & 80 \sigma 83 \sigma 84 \sigma \end{aligned}$	$\begin{aligned} & 56 \sigma 57 \sigma 61 \sigma- \\ & 80 \sigma 83 \sigma 85 \sigma \end{aligned}$	$\begin{gathered} 60 \sigma 62 \sigma 73 \sigma- \\ 87 \sigma 88 \sigma 89 \sigma \end{gathered}$
20 (83)	$\begin{aligned} & 57 \sigma 58 \sigma 61 \sigma- \\ & 84 \sigma 87 \sigma 89 \sigma \end{aligned}$	$\begin{gathered} 60 \sigma 61 \sigma 63 \sigma- \\ 84 \sigma 87 \sigma 89 \sigma \end{gathered}$	$\begin{aligned} & 62 \sigma 64 \sigma 76 \sigma- \\ & 92 \sigma 93 \sigma 94 \sigma \end{aligned}$
21 (88)	$\begin{aligned} & 62 \sigma 68 \sigma 70 \sigma- \\ & 89 \sigma 90 \sigma 91 \sigma \end{aligned}$	$\begin{aligned} & 64 \sigma 69 \sigma 70 \sigma- \\ & 89 \sigma 90 \sigma 91 \sigma \end{aligned}$	$\begin{aligned} & 70 \sigma 71 \sigma 81 \sigma- \\ & 98 \sigma 99 \sigma 101 \sigma \end{aligned}$
22 (75)	$\begin{aligned} & 52 \sigma 57 \sigma 59 \sigma- \\ & 76 \sigma 79 \sigma 80 \sigma \end{aligned}$	$\begin{gathered} 53 \sigma 55 \sigma 59 \sigma- \\ 76 \sigma 79 \sigma 80 \sigma \end{gathered}$	$\begin{gathered} 59 \sigma 60 \sigma 69 \sigma- \\ 87 \sigma 88 \sigma 89 \sigma \end{gathered}$
23 (75)	$\begin{gathered} 48 \sigma 50 \sigma 55 \sigma- \\ 76 \sigma 77 \sigma 79 \sigma \end{gathered}$	$\begin{gathered} 53 \sigma 54 \sigma 57 \sigma- \\ 76 \sigma 77 \sigma 79 \sigma \end{gathered}$	$\begin{gathered} 57 \sigma 58 \sigma 69 \sigma- \\ 83 \sigma 85 \sigma 87 \sigma \end{gathered}$
24 (75)	$\begin{gathered} 49 \sigma 55 \sigma 58 \sigma- \\ 76 \sigma 77 \sigma 79 \sigma \end{gathered}$	$\begin{gathered} 53 \sigma 55 \sigma 57 \sigma- \\ 76 \sigma 77 \sigma 78 \sigma \end{gathered}$	$\begin{aligned} & 59 \sigma 60 \sigma 69 \sigma- \\ & 85 \sigma 86 \sigma 88 \sigma \end{aligned}$
25 (79)	$54 \sigma 56 \sigma 60 \sigma$ -	54б57б59б-	$60 \sigma 62 \sigma 73 \sigma$ -

	81/82б84б	81/82\%84б	$88 \sigma 91 \sigma 92 \sigma$
26 (88)	$\begin{aligned} & 64 \sigma 68 \sigma 70 \sigma- \\ & 89 \sigma 90 \sigma 92 \sigma \end{aligned}$	$\begin{gathered} 67 \sigma 69 \sigma 70 \sigma- \\ 89 \sigma 90 \sigma 92 \sigma \end{gathered}$	$\begin{gathered} 70 \sigma 71 \sigma 80 \sigma- \\ 99 \sigma 101 \sigma 102 \sigma \end{gathered}$
27 (92)	$\begin{aligned} & 67 \sigma 70 \sigma 71 \sigma- \\ & 93 \sigma 94 \sigma 96 \sigma \end{aligned}$	$\begin{aligned} & 67 \sigma 69 \sigma 70 \sigma- \\ & 93 \sigma 94 \sigma 96 \sigma \end{aligned}$	$\begin{gathered} 72 \sigma 73 \sigma 84 \sigma- \\ 102 \sigma 103 \sigma 105 \sigma \end{gathered}$
28 (83)	$\begin{gathered} 58 \sigma 61 \sigma 62 \sigma- \\ 84 \sigma 85 \sigma 87 \sigma \end{gathered}$	$\begin{aligned} & 60 \sigma 61 \sigma 62 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 63 \sigma 64 \sigma 75 \sigma- \\ & 93 \sigma 94 \sigma 96 \sigma \end{aligned}$
29 (83)	$\begin{aligned} & 57 \sigma 59 \sigma 61 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{gathered} 54 \sigma 60 \sigma 61 \sigma- \\ 84 \sigma 85 \sigma 87 \sigma \end{gathered}$	$\begin{aligned} & 62 \sigma 64 \sigma 76 \sigma- \\ & 92 \sigma 93 \sigma 94 \sigma \end{aligned}$
30 (82)	$58 \sigma 61 \sigma 64 \sigma-$ 84б85 $\sigma 86 \sigma$	$\begin{aligned} & 55 \sigma 61 \sigma 62 \sigma- \\ & 84 \sigma 85 \sigma 86 \sigma \end{aligned}$	$\begin{gathered} 64 \sigma 65 \sigma 73 \sigma- \\ 93 \sigma 96 \sigma 97 \sigma \end{gathered}$
31 (88)	$\begin{aligned} & 66 \sigma 67 \sigma 70 \sigma- \\ & 89 \sigma 90 \sigma 92 \sigma \end{aligned}$	$\begin{aligned} & 62 \sigma 66 \sigma 69 \sigma- \\ & 89 \sigma 90 \sigma 92 \sigma \end{aligned}$	$\begin{gathered} 70 \sigma 71 \sigma 80 \sigma- \\ 99 \sigma 101 \sigma 102 \sigma \end{gathered}$
32 (83)	$\begin{aligned} & 59 \sigma 60 \sigma 61 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 53 \sigma 59 \sigma 61 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 62 \sigma 64 \sigma 76 \sigma- \\ & 92 \sigma 93 \sigma 94 \sigma \end{aligned}$
33 (88)	$\begin{aligned} & 65 \sigma 80 \sigma 81 \sigma- \\ & 89 \sigma 90 \sigma 93 \sigma \end{aligned}$	$\begin{aligned} & 6 \sigma 65 \sigma 67 \sigma- \\ & 89 \sigma 92 \sigma 93 \sigma \end{aligned}$	$\begin{aligned} & 70 \sigma 71 \sigma 82 \sigma- \\ & 98 \sigma 99 \sigma 101 \sigma \end{aligned}$
34 (75)	$\begin{aligned} & 53 \sigma 56 \sigma 58 \sigma- \\ & 76 \sigma 79 \sigma 80 \sigma \end{aligned}$	$\begin{aligned} & 55 \sigma 56 \sigma 57 \sigma- \\ & 76 \sigma 79 \sigma 80 \sigma \end{aligned}$	$\begin{aligned} & 58 \sigma 59 \sigma 69 \sigma- \\ & 83 \sigma 86 \sigma 88 \sigma \end{aligned}$
35 (105)	$\begin{gathered} 82 \sigma 83 \sigma 85 \sigma- \\ 106 \sigma 107 \sigma 110 \sigma \end{gathered}$	$\begin{gathered} 76 \sigma 77 \sigma 83 \sigma- \\ 106 \sigma 107 \sigma 109 \sigma \end{gathered}$	$\begin{gathered} 85 \sigma 86 \sigma 96 \sigma- \\ 117 \sigma 118 \sigma 119 \sigma \end{gathered}$
36 (83)	$\begin{aligned} & 49 \sigma 52 \sigma 56 \sigma- \\ & 84 \sigma 85 \sigma 86 \sigma \end{aligned}$	$\begin{aligned} & 55 \sigma 56 \sigma 60 \sigma- \\ & 84 \sigma 86 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 62 \sigma 63 \sigma 76 \sigma- \\ & 92 \sigma 93 \sigma 94 \sigma \end{aligned}$
37 (75)	$\begin{aligned} & 47 \sigma 48 \sigma 55 \sigma- \\ & 76 \sigma 77 \sigma 78 \sigma \end{aligned}$	$\begin{aligned} & 49 \sigma 52 \sigma 55 \sigma- \\ & 76 \sigma 77 \sigma 78 \sigma \end{aligned}$	$\begin{gathered} 58 \sigma 59 \sigma 68 \sigma- \\ 84 \sigma 86 \sigma 87 \sigma \end{gathered}$
38 (83)	$\begin{aligned} & 56 \sigma 57 \sigma 62 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{aligned} & 57 \sigma 58 \sigma 61 \sigma- \\ & 84 \sigma 85 \sigma 87 \sigma \end{aligned}$	$\begin{gathered} 65 \sigma 67 \sigma 76 \sigma- \\ 92 \sigma 93 \sigma 94 \sigma \end{gathered}$
39 (83)	$\begin{aligned} & 51 \sigma 54 \sigma 55 \sigma- \\ & 85 \sigma 86 \sigma 89 \sigma \end{aligned}$	$\begin{gathered} 48 \sigma 51 \sigma 55 \sigma- \\ 85 \sigma 86 \sigma 89 \sigma \end{gathered}$	$\begin{aligned} & 63 \sigma 65 \sigma 75 \sigma- \\ & 93 \sigma 95 \sigma 96 \sigma \end{aligned}$
40 (92)	60б64б66б- $94 \sigma 95 \sigma 98 \sigma$	$\begin{aligned} & 57 \sigma 60 \sigma 64 \sigma- \\ & 94 \sigma 95 \sigma 98 \sigma \end{aligned}$	$\begin{gathered} 72 \sigma 74 \sigma 83 \sigma- \\ 102 \sigma 103 \sigma 104 \sigma \end{gathered}$
41 (92)	$\begin{aligned} & 66 \sigma 67 \sigma 69 \sigma- \\ & 93 \sigma 94 \sigma 95 \sigma \end{aligned}$	$\begin{aligned} & 66 \sigma 67 \sigma 68 \sigma- \\ & 93 \sigma 94 \sigma 95 \sigma \end{aligned}$	$\begin{gathered} 74 \sigma 76 \sigma 83 \sigma- \\ 102 \sigma 106 \sigma 107 \sigma \end{gathered}$
42 (87)	$\begin{aligned} & 56 \sigma 63 \sigma 66 \sigma- \\ & 88 \sigma 89 \sigma 91 \sigma \end{aligned}$	$\begin{aligned} & 54 \sigma 60 \sigma 65 \sigma- \\ & 88 \sigma 89 \sigma 91 \sigma \end{aligned}$	$\begin{gathered} 68 \sigma 69 \sigma 79 \sigma- \\ 97 \sigma 98 \sigma 99 \sigma \end{gathered}$
43 (83)	$\begin{aligned} & 54 \sigma 59 \sigma 64 \sigma- \\ & 84 \sigma 85 \sigma 86 \sigma \end{aligned}$	$\begin{aligned} & 54 \sigma 58 \sigma 63 \sigma- \\ & 84 \sigma 85 \sigma 86 \sigma \end{aligned}$	$\begin{gathered} 66 \sigma 67 \sigma 76 \sigma- \\ 93 \sigma 94 \sigma 96 \sigma \end{gathered}$

Discussion of the results for the $\mathbf{5}-\mathbf{H T}_{\mathbf{2 A}}$ receptor.

Table 2 shows that the relative importance of variables in Eq. 2 is $\mathrm{Q}_{13}{ }^{*, \max }>\mathrm{S}_{9}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*} \sim \mathrm{~S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*} \gg$ $\eta_{14}>\mathrm{F}_{16}(\mathrm{HOMO})^{*} \gg \mathrm{Q}_{20}>\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$.
A high $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinity is associated with large negative values for $\mathrm{S}_{9}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$, small positive values for $\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$, small (positive) values for $\mathrm{Q}_{13}{ }^{*}$, max , large (positive) values for η_{14}, small (positive) values for $\mathrm{F}_{16}(\mathrm{HOMO})^{*}$, large (negative) values for Q_{20} and small negative values for $\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$.
Atom 9 is a sp^{2} nitrogen atom in ring B (Fig. 8). Table 11 shows that (HOMO) ${ }_{9}{ }^{*}$ and (HOMO-1) ${ }_{9}{ }^{*}$ have a π character. A high $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinity is associated with large negative values for $\mathrm{S}_{9}{ }^{\mathrm{E}}(\mathrm{HOMO}-1) *$. Note that this reactivity index is 'facing' the Fukui indices of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. By 'facing' we mean that both terms appear together in Eq. 1. These values are obtained by shifting the energy of (HOMO-1) $)^{*}$ toward zero, making this atom a good electron donor. Nevertheless in this case (HOMO) ${ }_{9}{ }^{*}$ and (HOMO-1)9* coincide with the molecule's (HOMO) and (HOMO-1), making it difficult this approach. Another possibility is to fully localize the molecular (HOMO) and (HOMO-1) on atom 9 . Thus, atom 9 seems to interact with
an electron-deficient center (π-cation or $\pi-\pi$ interactions). Another possibility is that π electrons of atom 9 participate in a $\mathrm{N}_{9}-\mathrm{H}_{22}$ - O hydrogen bond ${ }^{37}$.
Atom 20 is a hydrogen atom bonded to N_{12} in the chain linking rings B and C (Fig. 8). All local MOs have a σ nature (Table 13). Table 13 shows that local $(\mathrm{HOMO})_{20}{ }^{*}$ corresponds to inner occupied molecular orbitals that are energetically very far from the molecular HOMO. Local (LUMO) $)_{20}{ }^{*}$ coincides with the molecular LUMO. Small positive values for $\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ are associated with high pK values. Note that this reactivity index is 'facing' the Fukui indices of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. This is indirectly reflected in the fact that the net charge of this atom is positive in all molecules. Here the situation seems to be optimal when atom 20 is a bad electron donor and a bad electron acceptor. An ideal situation would be for $(\mathrm{LUMO}+1)_{20}{ }^{*}$ to match an empty MO of the molecule that has a high energy. Within a static model, it is possible to think that $(\mathrm{HOMO})_{20}{ }^{*}$ serves as a 'bridge' for the movement of electrons in a possible $\mathrm{N}_{12}-\mathrm{H}_{20}-\mathrm{X}$ hydrogen bond.
Atom 13 is a sp^{3} carbon atom bonded to N_{12} and $\mathrm{sp}^{2} \mathrm{C}_{14}$ (Fig. 8). All local MOs have a σ nature (Table 11). $(\mathrm{HOMO})_{13} *$ coincide with MOs that are energetically close to the molecule's HOMO. (LUMO) ${ }_{13} *$ coincides with the molecular LUMO. A high pK value is associated with small (positive) values for $\mathrm{Q}_{13}{ }^{*}$,max . So, an atom that is a bad charge acceptor would be an optimal situation. That could be achieved with two tactics. One is to make $(\mathrm{HOMO})_{13}{ }^{*}$ match the molecular HOMO and make the value of $\mathrm{F}_{13}(\mathrm{HOMO})^{*}$ as close as possible to 2.0 (i.e., that the molecular MO is located almost completely on atom 13). The second is to make (LUMO) 13^{*} match an empty MO of the molecule whose energy is as far away from energy zero as possible. We also know that the maximal amount of electronic charge that an electrophile may accept is defined as $\left(-\mu_{13}{ }^{*} / \eta_{13}{ }^{*}\right)$ where $\mu_{13}{ }^{*}$ is the local electron chemical potential of atom 13 and $\eta_{13}{ }^{*}$ is the local atomic hardness of the same atom. Since $\eta_{13}{ }^{*}$ is the gap between the energies of (HOMO) 13* and (LUMO) 13^{*}, the higher the local hardness, the lower $\mathrm{Q}_{13}{ }^{*}$,max. This is consistent with the second tactic just mentioned. The first tactic further suggests that atom 13 could be interacting with an electron-deficient site (alkyl or $\mathrm{CH}-\pi$ interactions ${ }^{37}$).
Atom 14 is a sp2 carbon atom in ring C (Fig. 8). Table 12 shows that the local frontier molecular orbitals of atom 14 coincide with or are energetically close to the molecule's frontier orbitals, all having a π nature. A high pK value is associated with large (positive) values for $\eta_{14} \eta_{14^{*}}$ is the gap between the energies of (HOMO) 14^{*} and (LUMO) ${ }_{14} *$. There are three approaches to obtain larger values for η_{14} (that is always a positive number in this kind of molecules). The first is to replace the current local (LUMO) ${ }_{14} *$ with an empty MO of the molecule that possesses a much higher energy. This will cause this atom to behave like a bad electron acceptor. The second method is to replace the current $(\mathrm{HOMO})_{14}{ }^{*}$ with an occupied MO of the molecule that has a much higher energy. This modification will cause atom 14 to behave like a bad electron donor. The third option is a combination of the previous two, making atom 14 a bad donor and a bad electron acceptor. These effects can be studied by various substitutions in the $\mathrm{C}_{15}-\mathrm{C}_{19}$ atoms of the C ring. An additional possibility is to substitute in the C_{13} atom. The actual theory does not allow us to select one of these three options, but we can assume that this atom is a bad giver and a bad electron acceptor (this atom can undergo π-cation, π-anion, $\pi-\pi$, π - σ and/or π-alkyl interactions ${ }^{37}$).
Atom 16 is a sp^{2} carbon atom in ring C (Fig. 8). Table 12 shows that all frontier local molecular orbitals of this atom have a π nature and that either coincide with the frontier OM of the molecule or are energetically very close to them. A high pK value is associated with small (positive) values for $\mathrm{F}_{16}(\mathrm{HOMO})^{*}$. Note that this reactivity index is 'facing' the nucleophilic superdelocalizability of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. Small values for this reactivity index can be obtained by decreasing the localization of this OM on atom 16, making this atom a bad electron donor. This fact can be explained at this level of the model by suggesting that the local occupied MOs are 'clashing' with occupied MOs in the receptor site ${ }^{38-41}$. This suggestion deserves more future analysis.
Atom 21 is a hydrogen atom bonded to N_{12} in the chain linking rings B and C (Fig. 8). All MOs have a σ nature. Table 13 shows that the local $(\mathrm{HOMO})_{21}{ }^{*}$ corresponds to an occupied MO that is energetically very far from the molecule's HOMO. Local $(\mathrm{LUMO})_{21}{ }^{*}$ either coincides with the molecule's LUMO or is energetically very close to it. Small negative values for $\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$ are associated with high pK values. Note that this reactivity index is 'facing' the Fukui indices of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. This means that this atom should behave as a bad electron donor. We can hypothesize that the local (LUMO) $)_{21}{ }^{*}$ of this atom 'allows'
electrons to circulate in an eventual hydrogen bond of the $\mathrm{X}-\mathrm{H}_{21}-\mathrm{N}_{12}$ type and that this circulation is facilitated by the net positive charge of H_{20}. All the suggestions are displayed in the partial 2D pharmacophore of Fig. 33.

Figure 33: Partial 2D pharmacophore for 5-HT 2 receptor affinity

Discussion of the results for the $\mathbf{5}-\mathbf{H T}_{\mathbf{2 B}}$ receptor

Table 4 shows that the importance of variables in Eq. 3 is $\mathrm{s}_{13>} \mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*} \sim \mathrm{~F}_{14}(\mathrm{LUMO})^{*}>\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}>$ $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*} \sim \mathrm{~S}_{23}{ }^{\mathrm{N}}>\mathrm{S}_{22}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}>\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}>\mathrm{S}_{21}{ }^{\mathrm{N}}>\mathrm{S}_{22}{ }^{\mathrm{N}} \gg \mathrm{S}_{13}{ }^{\mathrm{E}}$ (HOMO-2) *.
A high pK value is associated with large (positive) values for $\mathrm{F}_{14}(\mathrm{LUMO})^{*}$, large (positive) values for $\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$, large (negative) values for $\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$, small (positive) values for $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$, large positive values for $\mathrm{S}_{23}{ }^{\mathrm{N}}$, small (positive) values for s_{13}, small (positive) values for $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1) *$, large positive values for $\mathrm{S}_{22}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$, large positive values for $\mathrm{S}_{22}{ }^{\mathrm{N}}$, small (positive) values for $\mathrm{S}_{21}{ }^{\mathrm{N}}$ and small (negative) values for $\mathrm{S}_{13}{ }^{\mathrm{E}}$ (HOMO-2)*.
Atom 14 is a sp ${ }^{2}$ carbon atom in ring C (Fig. 8). Table 12 shows that the local frontier molecular orbitals of atom 14 coincide with or are energetically close to the molecule's frontier molecular orbitals, having all a π nature. A high pK value is associated with large positive values for $\mathrm{F}_{14}(\mathrm{LUMO}) *$. Note that this reactivity index is 'facing' the electrophilic superdelocalizability of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by augmenting the percentage of localization of (LUMO) ${ }_{14}$ * on this atom. Therefor we may suggest that this atom is facing an electron-rich center. We suggest that atom 14 is participating in π-anion, π - π and/or π-alkyl interactions ${ }^{37}$.
Atom 20 is a hydrogen atom bonded to N_{12} in the chain linking rings B and C (Fig. 8). All local MOs have a σ nature (Table 13). Local (HOMO) $)_{20}{ }^{*}$ corresponds to molecules' inner occupied MOs that are energetically very far from the HOMO. Local (LUMO) $)_{20}{ }^{*}$ coincides with empty molecular MOs that are energetically close to the LUMO. A high pK value is associated with large (positive) values for $\mathrm{S}_{20}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by lowering the $(\mathrm{LUMO}+2)_{20}{ }^{*}$ energy or by rising the localization of this empty MO on atom 20, making it more reactive. Note that this will shift the energies of $(\mathrm{LUMO})_{20}{ }^{*}$ and $(\mathrm{LUMO}+1)_{20}{ }^{*}$ toward zero. Again we are in the situation where H_{20} seems to play a role in the formation of a $\mathrm{X}-\mathrm{H}_{20}-\mathrm{N}_{12}$ hydrogen bond ${ }^{37}$.
Atom 21 is a hydrogen atom bonded to N_{12} in the chain linking rings B and C (Fig. 8). All MOs have a σ nature (Table 13). Local (HOMO) $)_{21}{ }^{*}$ corresponds to molecules' inner occupied MOs that are energetically very far from the HOMO. Local (LUMO) $)_{21}{ }^{*}$ coincides with empty molecular MOs that are energetically close to the LUMO. A high pK value is associated with large (negative) values for $\mathrm{S}_{21}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$. Note that this reactivity index is 'facing' the Fukui index of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained shifting the (HOMO-1) $)_{21}{ }^{*}$ toward zero. Note that this will also shift the energy of $(\mathrm{HOMO})_{21}{ }^{*}$ toward zero. The only suggestion we may present for the moment is that atom 21 is participating in a $\mathrm{N}_{12}-\mathrm{H}_{21}-\mathrm{X}$ hydrogen bond where X should be an electron-acceptor ${ }^{37}$.
Atom 4 is a sp ${ }^{2}$ carbon atom shared by rings A and B (Fig. 8). Table 10 shows that local (HOMO) ${ }_{4}{ }^{*}$ coincides with the molecular HOMO, and that local (LUMO) ${ }_{4}{ }^{*}$ corresponds to a higher empty molecular MO and not to the
molecular LUMO. A high pK value is associated with small (positive) values for $\mathrm{S}_{4}{ }^{\mathrm{N}}$ (LUMO)*. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. Small (positive) numerical values for $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}) *$ are obtained by increasing (LUMO) ${ }_{4}{ }^{*}$ energy, making this atom a bed electron acceptor. These values are obtained by increasing the (LUMO) ${ }_{4}{ }^{*}$ energy. This suggests that there could be a repulsive interaction between occupied MOs of both partners ${ }^{40,41}$.
Atom 23 is the first atom of the substituent attached to C_{1} (H or O from OMe in this case, see Table 1 and Figs. 1 and 8). In the case of H , all local MOs have a σ nature. A high pK value is associated with large positive values for $\mathrm{S}_{23}{ }^{\mathrm{N}}$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by shifting the energies of the first empty local MOs toward zero, making them more reactive. Therefore, atom 23 should be interacting with an electron-rich center at least in the case of an H atom. We suggest that in this case a carbon H -bond could occur (this suggestion is made despite the fact that in the definition of a carbon hydrogen bond it is stated that "a carbon atom is considered a donor either if it is in an acetylene group or if it is adjacent to an oxygen or nitrogen atom") ${ }^{37}$. Another possibility is that the empty σ MOs of atom 23 interact weakly with the occupied MOs of the site. It should be made clear that when a reactivity index of two atoms as different as hydrogen and oxygen appears inside a QSAR equation, there are always problems of interpretation. We have left an equation of this kind to show that perhaps some theoretical development is missing to explain this fact, or else the two atoms are interacting with two different sites. For that reason, a third suggestion is that the lone pairs of the oxygen atom may be interacting through a hydrogen bond ${ }^{37}$.
Atom 13 is a sp ${ }^{3}$ carbon atom bonded to N_{12} and $\mathrm{sp}^{2} \mathrm{C}_{14}$ (Fig. 8). All local MOs have a σ nature (Table 11). Local (HOMO) $13{ }^{*}$ corresponds to molecules' inner occupied MOs that are not energetically very far from the HOMO. Local (LUMO) 13 * coincides with the molecular LUMO. A high pK value is associated with small (negative) values for $\mathrm{S}_{13}{ }^{\mathrm{E}}$ (HOMO-2)*. Note that this reactivity index is 'facing' the Fukui index of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by modifying the localization of the molecule's MOs in such a way that local (HOMO-2) 13^{*} coincides with an inner occupied molecular MO. If we accept that the condition imposed on (HOMO-2) 13 * must be applied to (HOMO-1) 13 * and (HOMO) $13{ }^{*}$, then atom 13 should be a bad electron donor. This is not new because, given the location of atom 13 within the molecule, charge transfer is not expected. For this sp^{3} carbon atom we suggest alkyl, $\sigma-\pi$, weak carbon H -bond and/or alkyl $-\pi$ interactions ${ }^{37}$.
Atom 6 is a sp ${ }^{2}$ carbon atom in ring A (Fig. 8). All local frontier MOs have a π nature. (HOMO) ${ }_{6}{ }^{*}$ coincides with the molecular HOMO, and (LUMO) ${ }_{6}{ }^{*}$ coincides with an empty MO different from the molecular LUMO. A high pK value is associated with small (positive) values for $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. We expect that this atom will interact with an electron-rich center. But the small (positive) values for $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ are obtained by modifying the localization of the molecule's empty MOs in such a way that local (LUMO+1) ${ }_{6}{ }^{*}$ coincides with an upper empty MO of the molecule, making this atom less prone to interact with electron-rich centers. We suggest that the occupied local MOs of atom 16 have repulsive interactions with the occupied MOs of the site ${ }^{40,41}$.
Atom 22 is a hydrogen atom bonded to N_{9} (Fig. 8). All MOs have a σ nature (Table 13). Local (HOMO) $2_{22}{ }^{*}$ corresponds to molecules' inner occupied MOs that are energetically far from the HOMO. Local (LUMO) 22 $^{*}{ }^{*}$ coincides with empty molecular MOs that are energetically far from the LUMO. A high pK value is associated with large positive values for $\mathrm{S}_{22}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. An ideal situation would be when (LUMO) $)_{22}{ }^{*}$ coincides with the molecule's LUMO and the corresponding Fukui index has a high numerical value. Within a static model, it is possible to think that $(\mathrm{LUMO})_{22}{ }^{*}$ serves as a 'bridge' for the movement of electrons in a possible $\mathrm{N}_{9}-\mathrm{H}_{22}-\mathrm{X}$ hydrogen bond ${ }^{37}$.
All the suggestions are displayed in the partial 2D pharmacophore of Fig. 34.

Figure 34: Partial 2D pharmacophore for 5-HT $2 B$ receptor affinity

Discussion of the results for the 15 lowest experimental values of $\mathbf{5 - H} \mathbf{H}_{2}$ receptor affinity

Table 6 shows that the importance of variables in Eq. 4 is $\mathrm{s}_{16}>\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+1) * \gg \mathrm{~F}_{17}(\mathrm{HOMO}-2)^{*}>$ $\mathrm{F}_{10}(\mathrm{LUMO})^{*} \gg \mathrm{Q}_{17}$.
A high pK value is associated with small (positive) numerical values for s_{16}, large (positive) numerical values for $\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$, small (positive) numerical values for $\mathrm{F}_{10}(\mathrm{LUMO})^{*}$, small (negative) numerical values for $\mathrm{F}_{17}(\mathrm{HOMO}-2)^{*}$ and a positive net charge for atom 17.
Atom 16 is a sp ${ }^{2}$ carbon atom in ring C (Fig. 8). Table 12 shows that all frontier local molecular orbitals of this atom have a π nature and that either coincide with the frontier OM of the molecule or are energetically very close to them. A high pK value is associated with small (positive) values for $\mathrm{F}_{16}(\mathrm{HOMO})^{*}$, and with small (positive) numerical values for s_{16}. Note that this reactivity index is 'facing' the nucleophilic superdelocalizability of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. We can explain this fact by suggesting that, despite the fact that this atom is facing empty MOs of the receptor's atom, it seems that there is a negative interaction between the occupied MOs of both atoms ${ }^{40,41}$. It is difficult to suggest possible interactions. On the other hand, considering that $\mathrm{s}_{16}=1 / \eta_{16}$, a large gap between (HOMO) $)_{16}{ }^{*}$ and (LUMO) $)_{16}{ }^{*}$ can be obtained by changing (by substitution) the localization of (HOMO) $16{ }^{*}$ in such a way that it coincides with a with an occupied MO of the molecule having a much larger ionization potential.
Atom 10 is a sp^{3} carbon atom bonded to C_{7} and $\mathrm{sp}^{2} \mathrm{C}_{11}$ (Fig. 8). All local MOs have a σ nature (Table 11). Local $(\mathrm{HOMO})_{10}{ }^{*}$ corresponds to molecules' HOMO. Local (LUMO) $)_{10}{ }^{*}$ coincides with empty molecular MOs that are energetically far from the LUMO. A high pK value is associated with large (positive) numerical values for $\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ and with small (positive) numerical values for $\mathrm{F}_{10}(\mathrm{LUMO})^{*}$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by shifting the $(\mathrm{LUMO}+1)_{10}{ }^{*}$ energy toward zero, making empty MOs more reactive. Possible interactions are alkyl and π-alkyl ones ${ }^{37}$. Decreasing the numerical value of $\mathrm{F}_{10}(\mathrm{LUMO})^{*}$ is equivalent to diminish the localization of the corresponding MO.
Atom 17 is a sp ${ }^{2}$ carbon atom in ring C (Fig. 8). Table 12 shows that the frontier local MOs of this atom have a π nature. Local (HOMO) 17 * corresponds to molecules' inner occupied MOs that are not energetically far from the HOMO. Local (LUMO) $)_{17}{ }^{*}$ coincides with the LUMO. A high pK value is associated with small (negative) numerical values for F_{17} (HOMO-2)*, and with a positive net charge for this atom. Both conditions are complementary. Note that this reactivity index is 'facing' the nucleophilic superdelocalizability of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by diminishing the localization of (HOMO-2) 17^{*} on this atom. Because the interaction of an atom with a positive net charge with a site that appears to be an electron acceptor (either by charge transfer or by weak interaction between MOs) should be repulsive, we can only suggest
for the moment the existence of some possible repulsive interaction. In this case, more theoretical research is needed.
All the suggestions are displayed in the partial 2D pharmacophore of Fig. 35.

Figure 35: Partial 2D pharmacophore for the 15 lowest experimental values of 5-HT $T_{2 C}$ receptor affinity

Discussion of the results for the $\mathbf{2 6}$ highest experimental values of $\mathbf{5 - H} \mathbf{H}_{\mathbf{2 C}}$ receptor affinity

Table 8 shows that the importance of variables in Eq. 5 is $\mathrm{F}_{8}(\mathrm{LUMO}+1)^{* \gg} \mathrm{~S}_{18}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*>} \mathrm{S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*>}$ $\mathrm{S}_{6}{ }^{\mathrm{N}}>\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}>\mathrm{F}_{6}(\mathrm{HOMO}-2)^{*} \sim \mathrm{~F}_{5}(\mathrm{LUMO}) *$.
A high pK value is associated with large (positive) numerical values for $\mathrm{F}_{8}(\mathrm{LUMO}+1)^{*}$, small (positive) numerical values for $\mathrm{F}_{6}(\mathrm{HOMO}-2)^{*}$, small (negative) numerical values for $\mathrm{S}_{18}{ }^{\mathrm{E}}$ (HOMO-1)*, small (negative) numerical values for $\mathrm{S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$, small (positive) numerical values for $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$, large (positive) numerical values for $\mathrm{S}_{6}{ }^{\mathrm{N}}$ and large (positive) numerical values for $\mathrm{F}_{5}(\mathrm{LUMO}) *$.
Atom 8 is a sp^{2} carbon atom in ring B (Fig. 8). Table 11 shows that all frontier local MOs have a π nature. (HOMO) 8^{*} coincides with the molecular HOMO. Local (LUMO) 8^{*} corresponds to a higher empty molecular MO not energetically far from the molecular LUMO. A high pK value is associated with large (positive) numerical values for $\mathrm{F}_{8}(\mathrm{LUMO}+1)$. Note that this reactivity index is 'facing' the electrophilic superdelocalizability of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. These values are obtained by increasing the localization of $(\mathrm{LUMO}+1)_{8}{ }^{*}$ in such a way that in the best case $\mathrm{F}_{8}(\mathrm{LUMO}+1)^{*}=2$. Possible interactions are $\pi-\pi$ and/or π-anion ${ }^{37}$.
Atom 6 is a sp^{2} carbon atom in ring A (Fig. 8). All local frontier MOs have a π nature (Table 10). (HOMO) ${ }_{6}{ }^{*}$ coincides with the molecular HOMO, and (LUMO) ${ }_{6}{ }^{*}$ coincides with an empty MO different from the molecular LUMO. A high pK value is associated with small (positive) numerical values for $\mathrm{F}_{6}(\mathrm{HOMO}-2)$. Note that this reactivity index is 'facing' the nucleophilic superdelocalizability of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. The values are obtained by diminishing the localization of (HOMO-2) ${ }_{6}{ }^{*}$ in such a way that $\mathrm{F}_{6}(\mathrm{HOMO}-2)^{*}->0.0$. If $\mathrm{F}_{6}(\mathrm{HOMO}-2)^{*}=0$ this means that this MO will be replaced by an inner occupied MO of the molecule having a much larger ionization potential. All these facts can be explained by suggesting that atom 6 is interacting with an electron-deficient site but with a limit given by possible repulsive interactions of occupied MOs of both partners ${ }^{38,}{ }^{39}$. Possible interactions are $\pi-\pi$ and/or π-cation ${ }^{37}$.
Atom 18 is a sp^{2} carbon atom in ring C (Fig. 8). Table 12 shows that the local (HOMO) $18{ }^{*}$ corresponds to a molecular inner occupied MO that is not energetically far from the HOMO. Local (LUMO) $18{ }^{*}$ coincides with the molecular LUMO. All frontier MOs have a π nature. A high pK value is associated with small (negative) numerical values for $\mathrm{S}_{18}{ }^{\mathrm{E}}$ (HOMO-1)*. Note that this reactivity index is 'facing' the Fukui index of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. This suggests that only (HOMO) ${ }_{18}{ }^{*}$ is interacting with the site through $\pi-\pi$ and/or π-cation interactions ${ }^{37}$
Atom 13 is a sp^{3} carbon atom bonded to N_{12} and $\mathrm{sp}^{2} \mathrm{C}_{14}$ (Fig. 8). All local MOs have a σ nature (Table 11). Local (HOMO) 13^{*} corresponds to molecules' inner occupied MOs that are not energetically very far from the HOMO. Local (LUMO) $)_{13}{ }^{*}$ coincides with the molecular LUMO. A high pK value is associated with small (negative) numerical values for $\mathrm{S}_{13}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$. Note that this reactivity index is 'facing' the Fukui index of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. This atom could interact with the site through a weak carbon Hbond, alkyl, $\sigma-\pi$ and/or alkyl- π interactions.

Atom 4 is a sp ${ }^{2}$ carbon atom shared by rings A and B (Fig. 8). Table 10 shows that local (HOMO) ${ }_{4}{ }^{*}$ coincides with the molecular HOMO, and that local (LUMO) 4^{*} corresponds to a higher empty molecular MO and no to the molecular LUMO. All MOs have a π nature (Table 10). A high pK value is associated with small (positive) numerical values for $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$. Note that this reactivity index is 'facing' the Fukui index of the occupied local MOs of an atom or group of atoms in the receptor ${ }^{32}$. This suggests that atom 4 is interacting with the site only through (LUMO) 4^{*} and (LUMO+1) 4^{*} through $\pi-\pi$ and/or π-anion interactions ${ }^{37}$.
Atom 5 is a sp^{2} carbon atom belonging to rings A and B (Fig. 8). Table 10 shows that local (HOMO) $)_{5}^{*}$ coincides with the molecular HOMO. Local (LUMO) 5^{*} corresponds to a higher empty molecular MO not energetically far from the molecular LUMO. All local frontier MOs have a π nature. A high pK value is associated with large (positive) numerical values for $\mathrm{F}_{5}(\mathrm{LUMO}) *$. Note that this reactivity index is 'facing' the nucleophilic superdelocalizability of the empty local MOs of an atom or group of atoms in the receptor ${ }^{32}$. For the moment we have not an acceptable explanation.
All the suggestions are displayed in the partial 2D pharmacophore of Fig. 36.

Figure 36: Partial 2D pharmacophore for the 26 highest experimental values of 5- $\mathrm{H} T_{2 C}$ receptor affinity
In summary, we have obtained statistically significant results for the all the receptor data analyzed. We have not a clear explanation for the separation of the $5-\mathrm{HT}_{2 \mathrm{C}}$ data into two separate sets. Different modes of binding or different receptor site conformations are some possibilities. The data employed in this paper will be useful for evaluating the new developments in the model
No part of this paper has been written with IA tools.

References

[1]. Lin, J.; Liu, W.; Guan, J.; Cui, J.; Shi, R.; Wang, L.; Chen, D.; Liu, Y. Latest updates on the serotonergic system in depression and anxiety. Front. Synaptic Neurosci. 2023, 15.
[2]. Gómez-Jeria, J. S.; Robles-Navarro, A.; Jaramillo-Hormazábal, I. A DFT analysis of the relationships between electronic structure and activity at D2, $5-\mathrm{HT} 1 \mathrm{~A}$ and $5-\mathrm{HT} 2 \mathrm{~A}$ receptors in a series of Triazolopyridinone derivatives. Chemistry Research Journal 2022, 7, 6-28.
[3]. Gómez-Jeria, J. S.; Olarte-Lezcano, L. On the relationships between electronic structure and 5-HT2A, 5HT2C and D2 receptor affinities in a group of 2-aryl tryptamines. A DFT study. Chemistry Research Journal 2022, 7, 14-35.
[4]. Gómez-Jeria, J. S.; Robles-Navarro, A.; Soza-Cornejo, C. A note on the relationships between electronic structure and serotonin 5-HT1A receptor binding affinity in a series of 4-butyl-arylpiperazine-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives. Chemistry Research Journal 2021, 6, 76-88.
[5]. Gómez-Jeria, J. S.; Rojas-Candia, V. A DFT Investigation of the Relationships between Electronic Structure and D2, 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 Receptor Affinities in a group of Fananserin derivatives. Chemistry Research Journal 2020, 5, 37-58.
[6]. Gómez-Jeria, J. S.; Gatica-Díaz, N. A preliminary quantum chemical analysis of the relationships between electronic structure and 5-HT1A and 5-HT2A receptor affinity in a series of 8-acetyl-7-hydroxy-4methylcoumarin derivatives. Chemistry Research Journal 2019, 4, 85-100.
[7]. Gómez-Jeria, J. S.; Moreno-Rojas, C.; Castro-Latorre, P. A note on the binding of N-2-methoxybenzylphenethylamines (NBOMe drugs) to the 5-HT2C receptors. Chemistry Research Journal 2018, 3, 169-175.
[8]. Gómez-Jeria, J. S.; Abuter-Márquez, J. A Theoretical Study of the Relationships between Electronic Structure and 5-HT1A and 5- HT2A Receptor Binding Affinity of a group of ligands containing an isonicotinic nucleus. Chemistry Research Journal 2017, 2, 198-213.
[9]. Gómez-Jeria, J. S.; Robles-Navarro, A. A Quantum Chemical Study of the Relationships between Electronic Structure and cloned rat 5-HT2C Receptor Binding Affinity in N-Benzylphenethylamines. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6, 1358-1373.
[10]. Gómez-Jeria, J. S.; Robles-Navarro, A. DFT and Docking Studies of the Relationships between Electronic Structure and 5-HT2A Receptor Binding Affinity in N-Benzylphenethylamines. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6, 1811-1841.
[11]. Gómez-Jeria, J. S.; Robles-Navarro, A. A Note on the Docking of some Hallucinogens to the 5-HT2A Receptor. Journal of Computational Methods in Molecular Design 2015, 5, 45-57.
[12]. Richter, P.; Morales, A.; Gomez-Jeria, J. S.; Morales-Lagos, D. Electrochemical study of the hallucinogen (\pm)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminopropane. Analyst 1988, 113, 859-863.
[13]. Gómez-Jeria, J. S.; Cassels, B. K.; Saavedra-Aguilar, J. C. A quantum-chemical and experimental study of the hallucinogen (\pm)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminopropane (DON). European Journal of Medicinal Chemistry 1987, 22, 433-437.
[14]. Gómez-Jeria, J. S.; Morales-Lagos, D.; Cassels, B. K.; Saavedra-Aguilar, J. C. Electronic structure and serotonin receptor binding affinity of 7 -substituted tryptamines. Quantitative Structure-Activity Relationships 1986, 5, 153-157.
[15]. Gómez-Jeria, J. S.; Cassels, B. K.; Clavijo, R. E.; Vargas, V.; Quintana, R.; Saavedra-Aguilar, J. C. Spectroscopic characterization of a new hallucinogen: 1-(2,5-dimethoxy-4-nitrophenyl)-2-aminipropane (DON). Microgram (DEA) 1986, 19, 153-162.
[16]. Gómez-Jeria, J. S.; Morales-Lagos, D.; Rodriguez-Gatica, J. I.; Saavedra-Aguilar, J. C. Quantum-chemical study of the relation between electronic structure and pA2 in a series of 5 -substituted tryptamines. International Journal of Quantum Chemistry 1985, 28, 421-428.
[17]. Gómez-Jeria, J. S.; Morales-Lagos, D. R. Quantum chemical approach to the relationship between molecular structure and serotonin receptor binding affinity. Journal of Pharmaceutical Sciences 1984, 73, 1725-1728.
[18]. Gómez-Jeria, J. S.; Morales-Lagos, D. The mode of binding of phenylalkylamines to the Serotonergic Receptor. In QSAR in design of Bioactive Drugs, Kuchar, M., Ed. Prous, J.R.: Barcelona, Spain, 1984; pp 145-173.
[19]. Gómez-Jeria, J. S. Approximate Molecular Electrostatric Potentials of Protonated Mescaline Analogues. Acta sud Americana de Química 1984, 4, 1-9.
[20]. Halberstadt, A. L. Pharmacology and Toxicology of N-Benzylphenethylamine ("NBOMe") Hallucinogens. Current topics in behavioral neurosciences 2017, 32, 283-311.
[21]. Halberstadt, A. L. Pharmacology and Toxicology of N-Benzylphenethylamine ("NBOMe") Hallucinogens. In Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines, Baumann, M. H.; Glennon, R. A.; Wiley, J. L., Eds. Springer International Publishing: Cham, 2017; pp 283-311.
[22]. Toro-Sazo, M.; Brea, J.; Loza, M. I.; Cimadevila, M.; Cassels, B. K. 5-HT2 receptor binding, functional activity and selectivity in N-benzyltryptamines. PLOS ONE 2019, 14, e0209804.
[23]. Gómez Jeria, J. S. La Pharmacologie Quantique. Bollettino Chimico Farmaceutico 1982, 121, 619-625.
[24]. Gómez-Jeria, J. S. On some problems in quantum pharmacology I. The partition functions. International Journal of Quantum Chemistry 1983, 23, 1969-1972.
[25]. Gómez-Jeria, J. S. The use of competitive ligand binding results in QSAR studies. Il Farmaco; edizione scientifica 1985, 40, 299-302.
[26]. Gómez-Jeria, J. S. Modeling the Drug-Receptor Interaction in Quantum Pharmacology. In Molecules in Physics, Chemistry, and Biology, Maruani, J., Ed. Springer Netherlands: 1989; Vol. 4, pp 215-231.
[27]. Gómez-Jeria, J. S.; Ojeda-Vergara, M. Parametrization of the orientational effects in the drug-receptor interaction. Journal of the Chilean Chemical Society 2003, 48, 119-124.
[28]. Gómez-Jeria, J. S. Elements of Molecular Electronic Pharmacology (in Spanish). 1st ed.; Ediciones Sokar: Santiago de Chile, 2013; p 104.
[29]. Gómez-Jeria, J. S. A New Set of Local Reactivity Indices within the Hartree-Fock-Roothaan and Density Functional Theory Frameworks. Canadian Chemical Transactions 2013, 1, 25-55.
[30]. Gómez-Jeria, J. S.; Castro-Latorre, P.; Moreno-Rojas, C. Dissecting the drug-receptor interaction with the Klopman-Peradejordi-Gómez (KPG) method. II. The interaction of 2,5-dimethoxyphenethylamines and their N -2-methoxybenzyl-substituted analogs with 5-HT2A serotonine receptors. Chemistry Research Journal 2018, 4, 45-62.
[31]. Gómez-Jeria, J. S.; Crisóstomo-Cáceres, S. R.; Robles-Navarro, A. On the compatibility between formal QSAR results and docking results: the relationship between electronic structure and H5N1 (A/goose/Guangdong/SH7/2013) neuraminidase inhibition by some Tamiflu derivatives as an example. Chemistry Research Journal 2021, 6, 46-59.
[32]. Gómez-Jeria, J. S. A Note on Local Molecular Orbitals and Non-linear terms in the Klopman-PeradejordiGómez QSAR method. Chemistry Research Journal 2024, 9, 50-57.
[33]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P. Gaussian 16 16Rev. A.03, Gaussian: Pittsburgh, PA, USA, 2016.
[34]. Gómez-Jeria, J. S. D-Cent-QSAR: A program to generate Local Atomic Reactivity Indices from Gaussian 16 log files, v. 1.0; Santiago, Chile, 2020.
[35]. Gómez-Jeria, J. S. An empirical way to correct some drawbacks of Mulliken Population Analysis (Erratum in: J. Chil. Chem. Soc., 55, 4, IX, 2010). Journal of the Chilean Chemical Society 2009, 54, 482-485.
[36]. Statsoft. Statistica v.10, 2300 East 14 th St. Tulsa, OK 74104, USA, 2011.
[37]. Gómez-Jeria, J. S.; Robles-Navarro, A.; Kpotin, G.; Garrido-Sáez, N.; Gatica-Díaz, N. Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. Chemistry Research Journal 2020, 5, 32-52.
[38]. Hoffmann, R. How Chemistry and Physics Meet in the Solid State. 1987, 26, 846-878.
[39]. Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. Reviews of Modern Physics 1988, 60, 601-628.
[40]. Joselevich, E. Electronic Structure and Chemical Reactivity of Carbon Nanotubes: A Chemist's View. ChemPhysChem 2004, 5, 619-624.
[41]. Joselevich, E. Chemistry and Electronics of Carbon Nanotubes Go Together. Angewandte Chemie International Edition 2004, 43, 2992-2994.

