On the relationship between electronic structure and herbicidal activity of biphenyl ether derivatives having a five-membered heterocycle

J.S. Gómez-Jeria

Quantum Pharmacology Unit, Laboratory of Theoretical Chemistry, Department of Chemistry, Faculty of Sciences, University of Chile. Las Palmeras 3425, Santiago CP 7800003, Chile.
Correspondence to facien03@chile.cl (J.S.G.J.)

Abstract

The Klopman-Peradejordi-Gómez (KPG) QSAR method has been employed to search for formal relationships between herbicidal activity and electronic structure in a series of biphenyl ether derivatives having a five-membered heterocycle. Full geometry optimization and electronic structure calculations were performed within the Density Functional Theory at the B3LYP/6-311g(d,p) level with water as solvent (Polarizable Continuum Model). Three statistically significant relationships were found. The results of these three equations are completely compatible with each other. With that information, some drug-PPO interactions have been suggested. We analyzed the conformations of the optimized molecules as well as the conformers of the most and least active molecules. A qualitative analysis of the overlap of the molecules in their optimized form was also carried out for comparison purposes. Finally, the MEPs of the more active molecule were compared with those of the less active molecule at different distances from the nuclei. It is hoped that this information will be helpful to experimentalists. In particular, the conformers of molecule 21 offer an interesting possibility to develop new molecules.

Keywords Klopman-Peradejordi-Gómez method, herbicides, protoporphyrinogen oxidase, QSAR, solvent effects, conformers, common skeleton, molecular electrostatic potential, local atomic reactivity indices

Introduction

Herbicides are substances used to control weeds. Sodium dinitrocresylate ("Sinox"), the first chemical herbicide, was developed in France in 1896. In the late 1940s, new herbicides were developed and the era of weed killers began. The dark side of the use of herbicides and defoliants was in charge of the British and American Empires facing anti-colonial liberation movements. Between 1948 and 1960, the British Empire used herbicides and defoliants in the Malaysian rural area (as well as crop fields) to deprive Malayan National Liberation Army of cover and potential sources of food. The American Empire used herbicides in Southeast Asia during the Vietnam War, officially claiming that herbicidal (and incendiary agents such as napalm) were not chemical weapons. About 10% of the land surface of South Vietnam was sprayed. Almost 85% of the spraying was for defoliation and around 15% was for crop destruction. The policy of destroying the food supply of the civilian population in an area of conflict has been banned under Article 54 of Protocol I of the 1977 Geneva Conventions.
"Since the first case in 1970, confirming the resistance of the common groundsel (Senecio vulgaris) against triazine herbicide, the number of resistant weeds against various herbicides has been considerably increasing. To date, more than 200 species have been reported to be resistant to different types of herbicides" [1-3]. One of the targets of
herbicides is the protoporphyrinogen oxidase (PPO) enzyme. PPO catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto) [1]. The three-dimensional structure of plant mitochondrial PPO revealed that this homodimer folds into a compact structure that includes an FAD-binding, a substrate binding, and a membrane-binding domain. The PPO FAD binding domain has structural homologies to other flavoenzymes and it is known to be near the binding site of xenobiotic inhibitors. A number of different herbicides act as competitive inhibitors of PPO, resulting in the cytosolic accumulation of Proto [1]. When exposed to light and O_{2}, protoporphyrin IX can react with oxygen and generate reactive oxygen specie, which results in the peroxidative destruction of cell membranes and rapid cell death $[4,5]$.
Numerous groups of chemicals have been synthesized and tested for PPO inhibition [6-17]. Recently, a group of diphenyl ether derivatives containing a five-membered heterocycle were synthesized and tested against PPO inhibition [4].
This article has two objectives. First, to test if the linear form of the KPK method is capable of finding relationships between the electronic structure and the inhibition of the PPO enzyme. If the first objective is met, the second is to provide solid chemical information to experimentalists to design better herbicides.

Selection of molecules and biological activities

The selected molecules are a group of biphenyl ether derivatives and were selected from a recent study [4]. Their general formula and protoporphyrinogen oxidase (PPO) inhibitory activity are shown, respectively, in Fig. 1 and Table 2.

Figure 1: General formula of biphenyl ether derivatives
Table 1: Biphenyl ether derivatives and PPO inhibitory activity

Mol	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$	$\mathbf{R}_{\mathbf{6}}$	\mathbf{R}	\mathbf{X}	$\log \left(\mathbf{I C}_{\mathbf{5 0}}\right)$
1	CF_{3}	H	H	H	H	O	0.27
2	H	CF_{3}	H	H	H	O	-0.14
3	H	H	CF_{3}	H	H	O	0.11
4	H	H	H	CF_{3}	H	O	-0.51
5	NO_{2}	H	H	H	H	O	0.62
6	Me	H	H	H	H	O	0.78
7	H	H	Me	H	H	O	0.76
8	Br	H	H	H	H	O	0.63
9	H	H	Cl	H	H	O	0.54
10	CF	H	H	H	H	S	0.32
11	H	CF	H	H	H	S	-0.10
12	H	H	CF	H	H	S	0.18
13	H	H	H	CF	H	S	-0.67
14	Me	H	H	H	H	S	0.85
15	H	H	Me	H	H	S	0.84
16	Br	H	H	H	H	S	0.64
17	H	H	Cl	H	H	S	0.54

18	CF_{3}	H	H	H	OMe	O	-0.13
19	H	CF_{3}	H	H	OMe	O	-0.74
20	H	H	CF_{3}	H	OMe	O	-0.35
21	H	H	H	CF_{3}	OMe	O	-1.33
22	NO_{2}	H	H	H	OMe	O	0.57
23	H	H	NO_{2}	H	OMe	O	0.49
24	CF_{3}	H	H	H	OMe	S	-0.11
25	H	CF_{3}	H	H	OMe	S	-0.66
26	H	H	CF_{3}	H	OMe	S	-0.33
27	H	H	H	CF_{3}	OMe	S	-0.94
28	H	H	NO_{2}	H	OMe	S	0.49

Figure 2 shows the histogram of frequencies of $\log \left(\mathrm{IC}_{50}\right)$.

Figure 2: $\log \left(I C_{50}\right)$ data. Histogram of frequencies
Figure 3 shows the Box-Whiskers plot of $\log \left(\mathrm{IC}_{50}\right)$ values with median and quartile values.

Figure 3: Log $\left(I_{50}\right)$ data. Box-Whiskers plot
These plots provide a better vision of the homogeneity of the data distribution.
The method [18].
The Klopman-Peradejordi-Gómez (KPG) QSAR method is based on the following linear equation [19-24]:

$$
\begin{align*}
& \log \left(\mathrm{IC}_{50}\right)=\mathrm{a}+\mathrm{blog}\left(\mathrm{M}_{\mathrm{D}}\right)+\sum_{\mathrm{o}=1}^{\text {sub }} \varphi_{\mathrm{o}}+\sum_{\mathrm{i}=1}^{\mathrm{Y}}\left[\mathrm{e}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}^{\mathrm{E}}+\mathrm{s}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}^{\mathrm{N}}\right]+ \\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}} \sum_{\mathrm{m}=(\mathrm{HOMO}-2)^{*} ; \mathrm{i}}^{(\text {(HOMO })^{*}, \mathrm{i}}\left[\mathrm{~h}_{\mathrm{i}}(\mathrm{~m}) \mathrm{F}_{\mathrm{i}}\left(\mathrm{~m}^{*}\right)+\mathrm{j}_{\mathrm{i}}(\mathrm{~m}) \mathrm{S}_{\mathrm{i}}^{\mathrm{E}}\left(\mathrm{~m}^{*}\right)\right]+ \\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}} \sum_{\mathrm{m}=(\mathrm{LUMMO})^{*} ; \mathrm{i}}^{(\mathrm{LUMO})^{*}, \mathrm{i}}\left[\mathrm{r}_{\mathrm{i}}\left(\mathrm{~m}^{\prime}\right) \mathrm{F}_{\mathrm{i}}\left(\mathrm{~m}^{\prime *}\right)+\mathrm{t}_{\mathrm{i}}\left(\mathrm{~m}^{\prime}\right) \mathrm{S}_{\mathrm{i}}^{\mathrm{N}}\left(\mathrm{~m}^{\prime *}\right)\right]+ \\
& +\sum_{\mathrm{i}=1}^{\mathrm{Y}}\left[\mathrm{~g}_{\mathrm{i}} \mu_{\mathrm{i}}^{*}+\mathrm{k}_{\mathrm{i}} \eta_{\mathrm{i}}^{*}+\mathrm{o}_{\mathrm{i}} \omega_{\mathrm{i}}^{*}+\mathrm{z}_{\mathrm{i}} \zeta_{\mathrm{i}}^{*}+\mathrm{w}_{\mathrm{j}} \mathrm{Q}_{\mathrm{i}}^{*} \text {, max }\right] \tag{1}
\end{align*}
$$

where $\log \left(\mathrm{IC}_{50}\right)$ is the biological activity, M_{D} is the drug's mass and φ_{o} is the orientational parameter of the o-th substituent (the summation runs over all the substituents selected for the research). Q_{i} is the net charge of atom $\mathrm{I}, \mathrm{S}_{\mathrm{i}}^{\mathrm{E}}$ and S_{i}^{N} are, respectively, the total atomic electrophilic and nucleophilic superdelocalizabilities of atom i. $\mathrm{F}_{\mathrm{i}, \mathrm{m}^{*}}$ is the electron population of atom i in occupied (empty) local MO $\mathrm{m}^{*}\left(\mathrm{~m}^{\prime *}\right), \mathrm{S}_{\mathrm{i}}^{\mathrm{E}}(\mathrm{m})^{*}$ is the orbital electrophilic superdelocalizability at occupied local $M O m^{*}$ of atom i and $S_{i}^{N}\left(m^{\prime}\right)^{*}$ is the orbital nucleophilic superdelocalizability at empty local MO m'* of atom i. $\mu_{i}^{*}, \eta_{i}^{*}, \omega_{i}^{*}, \zeta_{i}^{*}$ and $\mathrm{Q}_{\mathrm{i}}^{*, \text { max }}$ are, respectively, the local atomic electronic chemical potential, the local atomic hardness, the local atomic electrophilicity, the local atomic softness and the maximal amount of electronic charge that atom i may accept. These indices were developed within the Hartree-Fock formalism [24]. Nevertheless, they can be calculated at the DFT level of theory [24]. The molecular orbitals with an asterisk are the Local Molecular Orbitals (LMO) of each atom. For atom x, the LMOs are defined as the subset of the molecule's MOs having an electron population greater than 0.01 e on x . For example, let us consider the highest occupied molecular orbital (HOMO) of molecule 1 shown below.

Figure 4: Highest occupied molecular orbital of molecule 1
For the purposes of the example, we are going to assume that the population analysis showed that the electronic population of each atom in which the MO is localized is greater than 0.01 . Therefore, this molecular HOMO is at the same time the local (HOMO)* of these atoms. The local (HOMO)* of each one of the remaining atoms, which does not correspond to the molecular HOMO, will correspond to the highest occupied molecular MO having an electron population greater than 0.01 on them.
In this study we have considered the three highest occupied local MOs ((HOMO)*, (HOMO-1)*, (HOMO-2)*) and the three lowest empty local MOs $\left((\mathrm{LUMO})^{*},(\mathrm{LUMO}+1)^{*},(\mathrm{LUMO}+2)^{*}\right)$ of each atom because experimental evidence indicates that they are determinant for molecular reactivity. The index Y in the summations runs over all atoms composing the molecule.
The KPG method has produced excellent results for a variety of molecules and biological activities [25-50].

Calculations [18].

The electronic structure of all molecules was calculated within the Density Functional Theory at the B3LYP/6$311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ level after full geometry optimization at the same level of theory. The Polarizable Continuum Model, using the integral equation formalism variant with water as solvent, was used in all calculations. The Gaussian suite of programs was used [51]. The numerical values of the local atomic reactivity indices were obtained from the Gaussian results with the D-Cent-QSAR software [52]. All the electron populations smaller than or equal to 0.01 e were considered as zero. Negative or greater than 2.0 electron populations coming from Mulliken Population Analysis were corrected as habitual [53]. Given that the resolution of the system of linear equations 1 is not possible, we made use of Linear Multiple Regression Analysis (LMRA) techniques to find the best solution. A matrix containing the dependent variable and the local atomic reactivity indices of all atoms of the common skeleton as independent variables was built. The Statistica software was used for LMRA [54].
We worked within the common skeleton concept: a definite collection of atoms common to all molecules analyzed accounting for about all the biological activity. Then, distinct parts or this common skeleton should account for almost all the interactions leading to the expression of a given biological activity [55]. The common skeleton for biphenyl ether derivatives is shown in Fig. 5.

Figure 5: Common skeleton of biphenyl ether derivatives
The choice of the common skeleton is made by the researchers. It is suggested to include the largest number of atoms to detect different kinds of possible interactions. In the case of $\mathrm{Y}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}$ and X_{6} in Table 1 , only the atom directly bonded to the skeleton is considered.

Results

The best equation obtained was:

$$
\begin{align*}
& \log \left(\mathrm{IC}_{50}\right)=0.91-0.03 \mathrm{~S}_{5}^{\mathrm{N}}-1.67 \mathrm{~F}_{4}(\mathrm{HOMO}-2)^{*}-0.007 \mathrm{~S}_{26}^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}-0.02 \mathrm{~S}_{28}^{\mathrm{E}}+ \\
& +0.01 \mathrm{~S}_{4}^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}-0.32 \mathrm{~F}_{29}(\mathrm{LUMO}+2)^{*} \tag{2}
\end{align*}
$$

with $\mathrm{n}=19, \mathrm{R}=0.99, \mathrm{R}^{2}=0.99$, adj- $\mathrm{R}^{2}=0.98, \mathrm{~F}(6,12)=178.22$ ($p<0.00000$) and $\mathrm{SD}=0.05$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{S}_{5}{ }^{\mathrm{N}}$ is the total atomic nucleophilic superdelocalizability of atom $5, \mathrm{~F}_{4}(\mathrm{HOMO}-2)^{*}$ is the Fukui index (the electron population) of the third highest occupied local MO of atom 4, $\mathrm{S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2) *$ is the nucleophilic superdelocalizability of the third lowest empty local MO of atom $26, \mathrm{~S}_{28}{ }^{\mathrm{E}}$ is the total atomic electrophilic superdelocalizability of atom $28, \mathrm{~S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ is the nucleophilic superdelocalizability of the second lowest empty local MO of atom 4 and $\mathrm{F}_{29}(\mathrm{LUMO}+2) *$ is the Fukui index (the electron population) of the third highest occupied local MO of atom 29.
Tables 2 and 3 show, respectively, the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 2. There are no significant internal correlations between independent variables (Table 3). Figure 6 displays the plot of observed vs. calculated $\log \left(\mathrm{IC}_{50}\right)$ values.

Table 2: Beta coefficients and t-test for significance of coefficients in Eq. 2

	Beta	t(12)	p-level
$\mathrm{S}_{5}^{\mathrm{N}}$	-0.76	-20.02	0.000000
$\mathrm{~F}_{4}(\mathrm{HOMO}-2)^{*}$	-0.51	-15.04	0.000000
$\mathrm{~S}_{26}\left({ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}\right.$	-0.39	-11.47	0.000000
$\mathrm{~S}_{28}{ }^{\mathrm{E}}$	-0.21	-6.07	0.00006
$\mathrm{~S}_{4}(\mathrm{LUMO}+1)^{*}$	0.18	4.90	0.0004
$\mathrm{~F}_{29}(\mathrm{LUMO}+2)^{*}$	-0.18	-4.66	0.0006

Table 3: Matrix of squared correlation coefficients for the variables in Eq. 2

	$\mathbf{S}_{5}{ }^{\boldsymbol{N}}$	$\mathbf{F}_{4}(\mathbf{H O M O}-2)^{*}$	$\mathbf{S}_{26}{ }^{\mathrm{N}}(\mathbf{L U M O}+\mathbf{2})^{*}$	$\mathbf{S}_{28}{ }^{\mathrm{E}}$	$\mathbf{F}_{29}(\mathbf{L U M O} \mathbf{2})^{*}$
$\mathrm{~S}_{5}{ }^{\mathrm{N}}$	1				
$\mathrm{~F}_{4}(\mathrm{HOMO}-2)^{*}$	0.00	1.00			
$\mathrm{~S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$	0.00	0.00	1.00		
$\mathrm{~S}_{28}{ }^{\mathrm{E}}$	0.00	0.00	0.01	1.00	
$\mathrm{~F}_{29}(\mathrm{LUMO}+2)^{*}$	0.03	0.00	0.01	0.00	1.00
$\mathrm{~S}_{4}^{\mathrm{N}}(\mathrm{LUMO}+)^{*}$	0.02	0.01	0.00	0.00	0.00

Figure 6: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 2). Dashed lines denote the 95% confidence interval. The associated statistical parameters of Eq. 2 indicate that this equation is statistically significant and that the variation of the numerical values of a group of six local atomic reactivity indices of atoms constituting the common skeleton explains about 98% of the variation of $\log \left(\mathrm{IC}_{50}\right)$. We need to provide evidence showing that the linear system of equations 1 gives superior results in this case. As we said in other papers, a "good regression analysis minimizes the residuals and it is expected that they be distributed as in a cloud showing no definite pattern or slope, centered (more or less) along of the horizontal axis (the x-axis is that of the values predicted by the regression equation) in a plot of predicted values vs. residuals scores. A random pattern indicates that the use of a linear model is correct. The plot of residuals versus deleted residuals shows the stability of the regression coefficients. No large discrepancies should appear between the residuals and the deleted residuals. Finally, we can use a normal probability plot of residuals to assess the normality of the distribution of a variable. If the observed residuals are distributed normally, they should fall on a straight line" [50]. Figures 7, 8 and 9 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 7: Plot of predicted values vs. residuals scores

Figure 8: Plot of residuals vs. deleted residuals

Figure 9: Normal probability plot of residuals
Figures 7 to 9 permit to state that the linear equation 2 is a good approximation to study this biological data and show that the regression coefficients are stable.

Local Molecular Orbitals. I.

We work with the hypothesis that any algebraic condition imposed on the numerical values of a reactivity index belonging to an inner occupied local MO or to an upper empty local MO of a given atom, also holds for the corresponding local MOs having a lower energy.
Tables 4 and 5 show the local MO structure of atoms 4, 5, 26, 28 and 29 (see Fig. 5). Nomenclature: Molecule (HOMO) / (HOMO-2)* $\left.\mathrm{HOMO}^{2}\right)^{*}(\mathrm{HOMO})^{*}-(\mathrm{LUMO})^{*}(\mathrm{LUMO}+1)^{*}(\mathrm{LUMO}+2)^{*}$. Lp (or lp) means lone pair.

Table 4: Local Molecular Orbitals of atoms 4, 5 and 26

Mol.	Atom 4 ($\mathrm{C} \mathrm{sp}^{2}$)	Atom 5 ($\mathrm{C} \mathrm{sp}^{2}$)	Atom 26
1 (100)	$\begin{aligned} & 97 \pi 98 \pi 100 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 98 \pi 100 \pi- \\ & 101 \pi 102 \pi 103 \pi \end{aligned}$	94б96б98б-102б105 114σ
2 (100)	$\begin{aligned} & 96 \sigma 97 \pi 98 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 97 \pi 98 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$82 \sigma 84 \sigma 96 \sigma-108 \sigma 109 \sigma 110 \sigma$
3 (100)	$\begin{aligned} & 97 \pi 98 \pi 100 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 98 \pi 100 \pi- \\ & 101 \pi 102 \pi 104 \pi \end{aligned}$	$83 \sigma 84 \sigma 96 \sigma-108 \sigma 109 \sigma 110 \sigma$
4 (100)	$\begin{aligned} & 96 \sigma 97 \pi 98 \pi- \\ & 102 \pi 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 97 \pi 98 \pi 100 \sigma- \\ & 102 \pi 104 \pi 105 \pi \end{aligned}$	$85 \sigma 86 \sigma 96 \sigma-108 \sigma 109 \sigma 110 \sigma$
5 (95)	$\begin{aligned} & 92 \pi 93 \pi 95 \pi- \\ & 96 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 92 \pi 93 \pi 95 \pi- \\ & 97 \sigma 98 \pi 99 \pi \end{aligned}$	$87 \sigma 88 \sigma 89 \sigma-96 \pi 99 \pi 100 \pi$
6 (88)	$\begin{aligned} & 86 \pi 87 \pi 88 \pi- \\ & 91 \pi 92 \pi 93 \pi \end{aligned}$	$\begin{aligned} & 86 \pi 87 \pi 88 \pi- \\ & 90 \pi 91 \pi 92 \pi \end{aligned}$	$83 \sigma 84 \sigma 86 \sigma-91 \sigma 115 \sigma 119 \sigma$
7 (88)	$\begin{aligned} & 85 \sigma 86 \pi 88 \pi- \\ & 91 \pi 92 \pi 93 \pi \end{aligned}$	$\begin{aligned} & 85 \sigma 86 \pi 88 \pi- \\ & 90 \pi 91 \pi 92 \pi \end{aligned}$	76б77 684σ - 96б97б99б
8 (101)	$\begin{aligned} & 97 \sigma 99 \pi 101 \pi- \\ & 103 \pi 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 97 \sigma 99 \pi 101 \pi- \\ & 102 \sigma 103 \pi 104 \pi \end{aligned}$	$98 \pi 99 \pi 101 \pi-104 \pi 106 \sigma 107 \sigma$
9 (92)	$\begin{aligned} & 89 \pi 90 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 88 \pi 90 \pi 92 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$	$73 \sigma 74 \sigma 87 \sigma-98 \sigma 103 \sigma 104 \sigma$
10 (104)	$\begin{aligned} & 101 \pi 102 \pi 104 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 99 \sigma 102 \pi 104 \pi- \\ & 106 \pi 107 \sigma 108 \pi \end{aligned}$	$96 \sigma 98 \sigma 99 \sigma-106 \sigma 107 \sigma 109 \sigma$
11 (104)	$\begin{aligned} & 100 \pi 102 \pi 104 \pi- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 102 \pi 104 \sigma- \\ & 106 \sigma 107 \pi 108 \pi \end{aligned}$	$82 \sigma 87 \sigma 99 \sigma-113 \sigma 114 \sigma 115 \sigma$
12 (104)	$\begin{aligned} & 100 \pi 102 \pi 104 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 99 \sigma 102 \pi 104 \pi- \\ & 106 \pi 107 \sigma 108 \pi \end{aligned}$	$85 \sigma 87 \sigma 99 \sigma-113 \sigma 114 \sigma 115 \sigma$
13 (104)	$\begin{aligned} & 99 \sigma 100 \pi 102 \pi- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 102 \pi 104 \sigma- \\ & 106 \sigma 107 \pi 108 \pi \end{aligned}$	$88 \sigma 91 \sigma 99 \sigma-113 \sigma 114 \sigma 115 \sigma$
14 (92)	$\begin{aligned} & 90 \pi 91 \pi 92 \pi- \\ & 95 \pi 97 \pi 111 \pi \end{aligned}$	$\begin{aligned} & 88 \sigma 91 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$86 \sigma 87 \sigma 91 \sigma-95 \sigma 120 \sigma 121 \sigma$
15 (92)	$\begin{aligned} & 88 \sigma 90 \pi 92 \sigma- \\ & 95 \pi 96 \pi 97 \pi \end{aligned}$	$\begin{gathered} 88 \sigma 90 \pi 92 \sigma- \\ 94 \sigma 95 \pi 96 \pi \end{gathered}$	$79 \sigma 80 \sigma 87 \sigma-101 \sigma 102 \sigma 104 \sigma$
16 (105)	$\begin{aligned} & 103 \pi 104 \pi 105 \pi- \\ & 108 \pi 109 \pi 110 \pi \end{aligned}$	$\begin{aligned} & 103 \pi 104 \pi 105 \pi- \\ & 107 \sigma 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 103 \pi 104 \pi 105 \pi- \\ & 108 \pi 110 \sigma 111 \sigma \end{aligned}$
17 (96)	$\begin{aligned} & 92 \pi 94 \pi 96 \pi- \\ & 99 \pi 100 \pi 101 \pi \end{aligned}$	$\begin{aligned} & 91 \pi 94 \pi 96 \pi- \\ & 98 \pi 99 \pi 100 \pi \end{aligned}$	$75 \sigma 76 \sigma 90 \sigma-102 \sigma 108 \sigma 109 \sigma$
18 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 112 \pi 126 \sigma \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \sigma- \\ & 110 \pi 111 \sigma 112 \pi \end{aligned}$	$\begin{aligned} & 102 \sigma 104 \sigma 105 \pi- \\ & 110 \pi 112 \pi 124 \sigma \end{aligned}$
19 (108)	$\begin{aligned} & 104 \sigma 105 \pi 106 \pi- \\ & 111 \pi 112 \pi 113 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \sigma- \\ & 109 \sigma 110 \sigma 111 \pi \end{aligned}$	$91 \sigma 93 \sigma 104 \sigma-116 \sigma 118 \sigma 119 \sigma$
20 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 111 \pi 112 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \sigma- \\ & 109 \sigma 110 \pi 112 \pi \end{aligned}$	$91 \sigma 93 \sigma 104 \sigma-116 \sigma 118 \sigma 120 \sigma$
21 (108)	$104 \sigma 105 \pi 106 \pi$ -	$105 \pi 106 \pi 108 \sigma-$	$93 \sigma 94 \sigma 104 \sigma-116 \sigma 118 \sigma 119 \sigma$

	$110 \pi 111 \pi 112 \pi$	$110 \pi 111 \sigma 112 \pi$	
$22(103)$	$96 \sigma 100 \pi 101 \pi-$	$100 \pi 101 \pi 103 \sigma-$	$93 \sigma 96 \sigma 97 \sigma-104 \pi 107 \pi 108 \pi$
	$104 \pi 107 \pi 108 \pi$	$105 \sigma 106 \pi 107 \pi$	
$23(103)$	$99 \sigma 100 \pi 101 \pi-$	$100 \pi 101 \pi 103 \sigma-$	$96 \sigma 97 \sigma 99 \sigma-112 \sigma 114 \sigma 115 \sigma$
	$104 \pi 107 \pi 108 \pi$	$104 \pi 106 \sigma 107 \pi$	
$24(112)$	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \sigma-$	$106 \sigma 107 \sigma 109 \sigma-$
	$115 \pi 116 \pi 132 \pi$	$114 \sigma 115 \pi 116 \pi$	$115 \sigma 116 \sigma 130 \sigma$
$25(112)$	$107 \sigma 109 \pi 111 \pi-$	$109 \pi 111 \pi 112 \sigma-$	$96 \sigma 97 \sigma 107 \sigma-121 \sigma 123 \sigma 124 \sigma$
	$115 \pi 116 \pi 128 \sigma$	$114 \sigma 115 \pi 116 \pi$	
$26(112)$	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \sigma-$	$96 \sigma 97 \sigma 107 \sigma-121 \sigma 123 \sigma 124 \sigma$
	$114 \pi 115 \pi 116 \pi$	$114 \pi 115 \sigma 116 \sigma$	
$27(112)$	$107 \sigma 109 \pi 111 \pi-$	$109 \pi 111 \pi 112 \sigma-$	$96 \sigma 97 \sigma 107 \sigma-121 \sigma 123 \sigma 124 \sigma$
	$114 \pi 115 \pi 116 \pi$	$114 \sigma 115 \pi 116 \pi$	
$28(107)$	$103 \pi 104 \pi 106 \pi-$	$104 \pi 106 \pi 107 \sigma-$	$83 \sigma 101 \sigma 102 \sigma-$
	$108 \pi 111 \pi 112 \pi$	$108 \pi 110 \sigma 111 \pi$	$117 \sigma 119 \sigma 120 \sigma$

Table 5: Local Molecular Orbitals of atoms 28 and 29

Mol.	Atom 28	Atom 29
1 (100)	$84 \sigma 85 \sigma 87 \sigma-$	$85 \sigma 92 \sigma 96 \sigma-$
2 (100)	$\begin{aligned} & 81 \sigma 82 \sigma 96 \sigma- \\ & 108 \sigma 109 \sigma 110 \sigma \end{aligned}$	$\begin{aligned} & 77 \sigma 84 \sigma 96 \sigma- \\ & 108 \sigma 109 \sigma 110 \sigma \end{aligned}$
3 (100)	$\begin{aligned} & 83 \sigma 84 \sigma 91 \sigma- \\ & 102 \sigma 104 \sigma 114 \sigma \end{aligned}$	$\begin{aligned} & 83 \sigma 84 \sigma 96 \sigma- \\ & 108 \sigma 109 \sigma 110 \sigma \end{aligned}$
4 (100)	$\begin{aligned} & 82 \sigma 83 \sigma 96 \sigma- \\ & 108 \sigma 109 \sigma 110 \sigma \end{aligned}$	$\begin{aligned} & 85 \sigma 86 \sigma 96 \sigma- \\ & 102 \sigma 104 \sigma 105 \sigma \end{aligned}$
5 (95)	$76 \sigma 85 \sigma 86 \sigma-$ 104б105 106σ	$\begin{aligned} & 75 \sigma 83 \sigma 85 \sigma- \\ & 104 \sigma 105 \sigma 106 \sigma \end{aligned}$
6 (88)	$\begin{aligned} & 74 \sigma 75 \sigma 84 \sigma- \\ & 96 \sigma 97 \sigma 98 \sigma \end{aligned}$	$\begin{aligned} & 73 \sigma 75 \sigma 84 \sigma- \\ & 96 \sigma 97 \sigma 98 \sigma \end{aligned}$
7 (88)	78б83न84б- $111 \sigma 112 \sigma 113 \sigma$	$\begin{aligned} & 76 \sigma 77 \sigma 84 \sigma- \\ & 96 \sigma 97 \sigma 100 \sigma \end{aligned}$
8 (101)	$\begin{aligned} & 82 \sigma 83 \sigma 91 \sigma- \\ & 107 \sigma 110 \sigma 111 \sigma \end{aligned}$	$\begin{aligned} & 83 \sigma 91 \sigma 97 \sigma- \\ & 110 \sigma 111 \sigma 112 \sigma \end{aligned}$
9 (92)	$\begin{aligned} & 82 \pi 87 \sigma 88 \pi- \\ & 95 \pi 96 \operatorname{lp} 98 \sigma \end{aligned}$	$\begin{aligned} & 71 \sigma 73 \sigma 87 \sigma- \\ & 98 \sigma 103 \sigma 104 \sigma \end{aligned}$
10 (104)	$\begin{aligned} & 82 \sigma 85 \sigma 87 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$	$\begin{aligned} & 87 \sigma 96 \sigma 99 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$
11 (104)	$\begin{aligned} & 85 \sigma 87 \sigma 99 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$	$\begin{aligned} & 80 \sigma 87 \sigma 99 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$
12 (104)	$\begin{aligned} & 84 \sigma 87 \sigma 95- \\ & 106 \sigma 107 \sigma 108 \sigma \end{aligned}$	$\begin{aligned} & 85 \sigma 87 \sigma 99 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$
13 (104)	$\begin{aligned} & 82 \sigma 85 \sigma \quad 99 \sigma- \\ & 113 \sigma 114 \sigma 115 \sigma \end{aligned}$	$\begin{aligned} & 87 \sigma 88 \sigma 99 \sigma- \\ & 107 \sigma 108 \sigma 109 \sigma \end{aligned}$
14 (92)	$\begin{aligned} & 77 \sigma 78 \sigma 87 \sigma- \\ & 101 \sigma 102 \sigma 103 \sigma \end{aligned}$	$\begin{aligned} & 76 \sigma 78 \sigma 87 \sigma- \\ & 101 \sigma 102 \sigma 104 \sigma \end{aligned}$
15 (92)	$\begin{aligned} & 82 \sigma 86 \sigma 87 \sigma- \\ & 115 \sigma 117 \sigma 118 \sigma \end{aligned}$	$\begin{aligned} & 72 \sigma 79 \sigma 87 \sigma- \\ & 101 \sigma 102 \sigma 105 \sigma \end{aligned}$
16 (105)	$\begin{aligned} & 84 \sigma 86 \sigma 95 \sigma- \\ & 111 \sigma 115 \sigma 116 \sigma \end{aligned}$	$\begin{aligned} & 86 \sigma 95 \sigma 100 \sigma- \\ & 115 \sigma 116 \sigma 117 \sigma \end{aligned}$
17 (96)	$\begin{aligned} & 86 \pi 90 \sigma 91 \pi- \\ & 99 \pi 100 \operatorname{lp} 102 \sigma \end{aligned}$	$\begin{aligned} & 75 \sigma 76 \sigma 90 \sigma- \\ & 102 \sigma 109 \sigma 111 \sigma \end{aligned}$
18 (108)	$\begin{aligned} & 88 \sigma 89 \sigma 92 \sigma- \\ & 116 \sigma 117 \sigma 118 \sigma \end{aligned}$	$\begin{aligned} & 93 \sigma 101 \sigma 102 \sigma- \\ & 117 \sigma 118 \sigma 119 \sigma \end{aligned}$
19 (108)	89б91б104б-	90б91б104б-

	$116 \sigma 118 \sigma 119 \sigma$	$118 \sigma 119 \sigma 120 \sigma$
$20(108)$	$91 \sigma 92 \sigma 99 \pi-$	$88 \sigma 89 \sigma 104 \sigma-$
	$110 \sigma 112 \sigma 122 \sigma$	$118 \sigma 119 \sigma 121 \sigma$
$21(108)$	$88 \sigma 89 \sigma 104 \sigma-$	$93 \sigma 94 \sigma 104 \sigma-$
	$116 \sigma 118 \sigma 120 \sigma$	$110 \sigma 112 \sigma 122 \sigma$
$22(103)$	$81 \sigma 82 \sigma 93 \sigma-$	$79 \sigma 81 \sigma 93 \sigma-$
	$112 \sigma 113 \sigma 114 \sigma$	$112 \sigma 113 \sigma 114 \sigma$
$23(103)$	$91 \pi 92 \sigma 94 \sigma-$	$78 \sigma 81 \sigma 99 \sigma-$
	$104 \pi 107 \pi 108 \pi$	$114 \sigma 117 \sigma 118 \sigma$
$24(112)$	$88 \sigma 91 \sigma 95 \sigma-$	$93 \sigma 95 \sigma 106 \sigma-$
	$121 \sigma 122 \sigma 123 \sigma$	$122 \sigma 123 \sigma 124 \sigma$
$25(112)$	$91 \sigma 94 \sigma 107 \sigma-$	$93 \sigma 94 \sigma 107 \sigma-$
	$121 \sigma 123 \sigma 124 \sigma$	$123 \sigma 124 \sigma 125 \sigma$
$26(112)$	$94 \sigma 95 \sigma 103 \pi-$	$91 \sigma 93 \sigma 107 \sigma-$
	$114 \sigma 115 \pi 116 \sigma$	$123 \sigma 124 \sigma 125$
$27(112)$	$90 \sigma 91 \sigma 107 \sigma-$	$96 \sigma 97 \sigma 107 \sigma-$
	$121 \sigma 123 \sigma 124 \sigma$	$115 \sigma 116 \sigma 128 \sigma$
$28(107)$	$95 \pi 96 \sigma 98 \sigma-$	$83 \sigma 101 \sigma 102 \sigma-$
	$108 \pi 111 \pi 112 \pi$	$119 \sigma 120 \sigma 121 \sigma$

Molecules that did not participate in the generation of Eq. 2

Figure 10 shows the histogram of frequencies of the excluded $\log \left(\mathrm{IC}_{50}\right)$ data (data excluded during the generation of Eq. 2). These molecules are 4, 7, 13, 17, 19, 21 and 25-27 of Table 1 ($\mathrm{n}=9$).

Figure 10: Log(IC50) data. Histogram of frequencies of the excluded data
We can see that the $\log \left(\mathrm{IC}_{50}\right)$ values not used to generate equation 2 are distributed along the same interval as the values considered for that purpose. This is important because if, for example, the values not considered were within a small interval that is on the extreme right or left of the distribution of the experimental data, the possibility of the existence of a second mechanism of action would have to be considered.

Conformational aspects

The optimized geometries employed here were obtained for calculations conducted with water as solvent. The conformation of each molecule at the active site is not known. However, equation 2 strongly suggests that the molecules with which Equation 2 was generated are all similarly aligned. Therefore, it is interesting to compare the
optimized geometries. Figure 1 shows the approximate superimposition of atoms 1 to 3 of molecules 2-9 to molecule 1 (see Fig. 5). Molecule 1 is an arbitrary choice [56].

Figure 11: Approximate superimposition of atoms 1, 2 and 3 of molecules 2-9 on molecule 1.
Molecule 2 (see Table 1) is pointing toward a different direction. Figure 12 shows the approximate superimposition of atoms 1 to 3 of molecules 10-17 on molecule 1 (see Fig. 5).

Figure 12: Approximate superimposition of atoms 1, 2 and 3 of molecules 10-17 on molecule 1
We can see that all molecules superimpose well. Figure 13 shows the approximate superimposition of atoms 1 to 3 of molecules 18-23 on molecule 1 .

Figure 13: Approximate superimposition of atoms 1 to 3 of molecules 18-23 on molecule 1
Here, ring C of molecules $18-23$ points toward a different point than ring C of molecule 1 as shown in the next figures.

Figure 15: Approximate superimposition of atoms 1 to 3 of molecules 24-28 on molecule 1
We can see that, in general, it is not possible to make significant suggestions about relationships between conformation and activity. We need to explore other molecular properties such as the conformers.
From Table 1 we observe that molecule 14 is the less active one and that molecule 21 is the most active one regarding PPO inhibition. To compare their conformational behavior, we used MarvinView software v23.1 (with Dreiding Force Field, 'very strict' optimization limit and a diversity limit of 0.1, [57]) to get the first ten conformers of these molecules. In figures 16 to 18 we present the geometry of the optimized molecule 14 and its ten conformers [58].

Figure 16: Molecule 14. Optimized geometry (upper left) and its first three conformers

Figure 17: Molecule 14. Conformers 4 to 7

Figure 18: Molecule 14. Conformers 8 to 10.
We can see that, in general terms, the geometry-optimized molecule and its conformers have extended conformations. No intramolecular interaction is observed. In figures 19 to 21 we present the geometry of the optimized molecule 21 and its ten conformers.

Figure 19: Molecule 21. Optimized geometry (upper left) and its first three conformers
In this figure, we can see that the optimized geometry has an approximately extended conformation. No intramolecular interactions are observed. In the case of the first two conformers, we see that an interaction C-F...C (3.47 and $3.48 \AA$) appears, which limits the conformational freedom of ring A. The third conformer has an interaction C-F...H2,82) which occurs at a smaller distance between the participants than in the case of conformers 1
and 2. This interaction also limits the rotational freedom of ring A. These two interactions appear in the conformers 4 to 10 (Fig. 20 and 21 below).

Figure 20: Molecule 21. Conformers 4 to 7.

Figure 21: Molecule 21. Conformers 8 to 10.
An important conclusion would be that the conformers of the more active molecule have an intermolecular interaction that produces a certain relative position of the A and B rings. In the case of the less active molecule, only conformers with extended conformations appear. Noting in Table 1 that the $-\mathrm{CF}_{3}$ substituent bonded in the R_{3} position in molecule 1 has not a high inhibitory activity, we investigated its conformers. Figures 22 to 24 show the results of conformers search.

Figure 22: Molecule 1. Optimized geometry (upper left) and its first three conformers.

Figure 23: Molecule 1. Conformers 4 to 7

Figure 24: Molecule 1. Conformers 8 to 10
We can see that there are no conformers having intramolecular interactions because ring B has not a suitable substituent. In the case of molecule 18 , we observed that it has a high inhibitory activity. Since it has a CF_{3} group in position R_{3}, its first ten conformers were obtained to see if ring A could rotate to form some intramolecular bond with the OMe group of ring B. Figures 25 to 27 show the results.

Figure 25: Molecule 18. Optimized geometry (upper left) and its first three conformers.

Figure 26: Molecule 18. Conformers 4 to 7

Figure 27: Molecule 18. Conformers 8 to 10.
No intramolecular interactions are observed in any structure, because the distance between the potential participants is too great.
A correct suggestion for experimentalists is to find a way to keep the relative orientation of rings A and B fixed. For example, a substituent of the form Ring A-CF $-\mathrm{CH}_{2}-\mathrm{CH}_{2}$-O-Ring B seems appropriate.

Frontier Molecular Orbitals

Table 6 shows the main localization of HOMO and LUMO on rings A-C (see Fig. 5 for ring numbering). Capital letters indicate a localization with high electron density. Lowercase letters indicate low electron density. This is a qualitative appreciation.

Table 6: Main localization of the Frontier Molecular Orbitals.

Mol	HOMO	LUMO	$\mathbf{l o g}\left(\mathbf{I C 5 0}^{\text {) }}\right.$
1	A, B	B, C	0.27
2	B, C	B, C	-0.14
3	A, B, c	B, C, a	0.11
4	B, C, a	B, C	-0.51
5	A, B, c	A	0.62
6	A, B	B, C	0.78
7	A, B	B, C	0.76
8	A, B	B, C	0.63
9	A, B	B, C	0.54

10	A, B	B, C	0.32
11	a, B, c	B, C	-0.10
12	A, B	B, C	0.18
13	a, B	B, C	-0.67
14	A, B	B, C	0.85
15	A, B	B, C	0.84
16	A, B	B, C	0.64
17	A, B	B, C	0.54
18	a, B	B, C	-0.13
19	B	B, C	-0.74
20	a, B	B, C	-0.35
21	a, B	B, C	-1.33
22	a, B	A	0.57
23	a, B	A	0.49
24	a, B	B, C	-0.11
25	a, B	B, C	-0.66
26	a, B	B, C	-0.33
27	a, B	B, C	-0.94
28	a, B	A	0.49

The first point to state is that all molecules have PPO inhibitory activity. We may note that the molecular LUMO is localized on rings B and C in almost all molecules. In four of them, it is localized only on ring A. This could mean that, if rings B and/or C are interacting with the site through an empty MO, this MO will correspond to a higher empty one. The molecular HOMO is localized on rings A and B with the only exception of molecule 19. These are examples showing the possible chemical role of MOs other than the frontier ones.
To get more information about the inhibitory mechanism, and using Table 6, we conducted the following two new LMRAs. In the first one, we used a set of molecules with only negative values for $\log \left(\mathrm{IC}_{50}\right)$. In the second one, molecules with only positive values for $\log \left(\mathrm{IC}_{50}\right)$ without including the molecules with LUMO localized only on ring A were analyzed.

LMRA for molecules with only negative values for $\log \left(\mathbf{I C}_{50}\right)$.
Molecules 2, 4, 11, 13 18-21 and 24-27 were employed. The best equation obtained is:

$$
\begin{equation*}
\log \left(\mathrm{IC}_{50}\right)=1.66-1.54 \mathrm{~F}_{28}(\mathrm{LUMO}+1) *-0.05 \mathrm{~S}_{6}^{\mathrm{N}}(\mathrm{LUMO}+1) *-2.46 \mathrm{Q}_{2}^{\max } \tag{3}
\end{equation*}
$$

with $\mathrm{n}=12, \mathrm{R}=0.98, \mathrm{R}^{2}=0.97$, adj $-\mathrm{R}^{2}=0.96, \mathrm{~F}(3,8)=85.186$ ($p<0.00000$) and $\mathrm{SD}=0.08$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{Q}_{2}{ }^{\text {max }}$ is the maximal amount of electronic charge that atom 2 may accept, $\mathrm{F}_{28}(\mathrm{LUMO}+1)^{*}$ is the Fukui index of the second lowest empty local MO localized on atom 28 and $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ is the nucleophilic superdelocalizability of the second lowest empty local MO localized on atom 6. Tables 7 and 8 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 3. There are no significant internal correlations between independent variables. Figure 28 displays the plot of observed $v s$. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Table 7: Beta coefficients and t-test for significance of coefficients in Eq. 3

Variable	Beta	t(8)	p-value
$\mathrm{F}_{28}(\mathrm{LUMO}+1)^{*}$	-1.06	-15.84	0.000000
$\mathrm{~S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$	-0.31	-4.68	0.002

Table 8: Matrix of squared correlation coefficients for the variables in Eq. 3

	$\mathbf{Q}^{2 \max }$	$\mathbf{S}_{6}{ }^{\mathrm{N}}(\mathbf{L U M O}+\mathbf{1})^{*}$	$\mathbf{F}_{28}($ LUMO+1)*
$\mathrm{Q}_{2}{ }^{\text {max }}$	1.00		
$\mathrm{~S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$	0.01	1.00	
$\mathrm{~F}_{28}(\mathrm{LUMO}+1)^{*}$	0.00	0.15	1.00

Figure 28: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 3). Dashed lines denote the 95% confidence interval. The associated statistical parameters of Eq. 3 indicate that this equation is statistically significant and that the variation of the numerical values of a group of three local atomic reactivity indices of atoms constituting the common skeleton explains about 96% of the variation of $\log \left(\mathrm{IC}_{50}\right)$. Figures 29,30 and 31 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 29: Plot of predicted values vs. residuals scores

Figure 30. Plot of residuals vs. deleted residuals

Figure 31. Normal probability plot of residuals
The above figures allow declaring that the linear equation 3 is a good approximation to study this biological data and show that the regression coefficients are stable.

LMRA for molecules with only positive values for $\log \left(\mathrm{IC}_{50}\right)$ without including the molecules with LUMO localized only on ring \mathbf{A}.
Molecules 1, 3, 6-10, 12, 14-17 were employed. The best equation obtained is:
$\log \left(\mathrm{IC}_{50}\right)=1.18+4.23 \mathrm{~S}_{14}^{\mathrm{E}}(\mathrm{HOMO})^{*}$
with $\mathrm{n}=12, \mathrm{R}=0.97, \mathrm{R}^{2}=0.94$, adj $-\mathrm{R}^{2}=0.93, \mathrm{~F}(1,10)=155.94$ ($p<0.00000$) and $\mathrm{SD}=0.06$. No outliers were detected, and no residuals fall outside the $\pm 2 \sigma$ limits. $\mathrm{S}_{14}{ }^{\mathrm{E}}(\mathrm{HOMO}) *$ corresponds to the highest occupied local MO localized on atom 14. Table 9 shows the beta coefficient and the result of the t-test for significance of coefficient. Figure 32 displays the plot of observed vs. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Table 9: Beta coefficient and t-test for significance of coefficient in Eq. 4

Figure 32: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 4). Dashed lines denote the 95% confidence interval The associated statistical parameter of Eq. 4 indicates that this equation is statistically significant and that the variation of the numerical values of one local atomic reactivity index of atoms constituting the common skeleton explains about 93% of the variation of $\log \left(\mathrm{IC}_{50}\right)$. Figures 33,34 and 35 show, respectively, the plot of predicted values vs. residuals scores, the plot of residual vs. deleted residuals and the normal probability plot of residuals.

Figure 33: Plot of predicted values vs. residuals scores

Figure 34: Plot of residuals vs. deleted residuals

Figure 35. Normal probability plot of residuals

The above figures allow to declare that the linear equation 4 is a useful approximation to study this biological data and show that the regression coefficients are stable.

Local Molecular Orbitals. II.

Table 10 shows the local molecular orbitals of atoms participating in Eq. 3 and 4 (atom 28 is in another Table).
Table 10: Local Molecular Orbitals of atoms 2, 6 and 14.

Mol.	Atom 2 ($\mathbf{C s p}^{2}$)	Atom 6 ($\mathbf{N ~ s p}^{2}$)	Atom 14 (C sp ${ }^{2}$)
1 (100)	$\begin{aligned} & 97 \pi 98 \pi 100 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 97 \operatorname{lp} 98 \pi 100 \pi- \\ & 101 \pi 102 \sigma 104 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 98 \pi 100 \pi- \\ & 101 \pi 103 \sigma 104 \sigma \end{aligned}$
2 (100)	$\begin{aligned} & 96 \sigma 97 \pi 98 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 97 \pi 98 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$	$\begin{aligned} & 96 \pi 99 \pi 100 \pi- \\ & 101 \pi 102 \pi 103 \pi \end{aligned}$
3 (100)	$\begin{aligned} & 97 \pi 98 \pi 100 \pi- \\ & 102 \pi 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 97 \operatorname{lp} 98 \pi 100 \pi- \\ & 101 \pi 102 \pi 103 \pi \end{aligned}$	$\begin{aligned} & 96 \pi 98 \pi 100 \pi- \\ & 101 \pi 103 \sigma 106 \sigma \end{aligned}$
4 (100)	$\begin{aligned} & 97 \pi 98 \pi 100 \pi- \\ & 102 \pi 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 96 \sigma 98 \pi 1001 p- \\ & 102 \sigma 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 95 \pi 96 \pi 100 \pi- \\ & 101 \pi 103 \pi 106 \sigma \end{aligned}$
5 (95)	$\begin{aligned} & 92 \pi 93 \pi 95 \pi- \\ & 96 \pi 98 \pi 99 \pi \end{aligned}$	$\begin{aligned} & 92 \pi 93 \pi 95 \pi- \\ & 96 \pi 98 \pi 99 \pi \end{aligned}$	$\begin{aligned} & 91 \pi 93 \pi 95 \pi- \\ & 97 \pi 98 \pi 99 \pi \end{aligned}$
6 (88)	$\begin{aligned} & 86 \pi 87 \pi 88 \pi- \\ & 90 \pi 91 \pi 92 \pi \end{aligned}$	$85 \operatorname{lp} 86 \operatorname{lp} 88 \pi-$ $90 \pi 91 \pi 92 \pi$	$\begin{aligned} & 84 \sigma 86 \pi 88 \pi- \\ & 89 \pi 90 \pi 91 \pi \end{aligned}$
7 (88)	$\begin{aligned} & 85 \sigma 86 \pi 88 \pi- \\ & 90 \pi 91 \pi 92 \pi \end{aligned}$	$\begin{aligned} & 85 \operatorname{lp} 86 \pi 88 \pi- \\ & 90 \pi 91 \pi 92 \pi \end{aligned}$	$\begin{aligned} & 84 \pi 86 \pi 88 \pi- \\ & 89 \pi 90 \pi 91 \pi \end{aligned}$
8 (101)	$\begin{aligned} & 97 \sigma 99 \pi 101 \pi- \\ & 104 \pi 105 \pi 106 \pi \end{aligned}$	$\begin{aligned} & 98 \pi 99 \operatorname{lp} 101 \pi- \\ & 103 \pi 104 \pi 105 \pi \end{aligned}$	$\begin{aligned} & 97 \pi 99 \pi 101 \pi- \\ & 102 \pi 103 \pi 104 \pi \end{aligned}$
9 (92)	$\begin{aligned} & 88 \pi 90 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 89 \operatorname{lp} 90 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{gathered} 87 \pi 90 \pi 92 \pi- \\ 93 \pi 94 \pi 95 \pi \end{gathered}$
10 (104)	$\begin{aligned} & 101 \pi 102 \pi 104 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 100 \operatorname{lp} 102 \pi 104 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 99 \pi 102 \pi 104 \pi- \\ & 105 \pi 106 \pi 107 \pi \end{aligned}$
11 (104)	$\begin{aligned} & 100 \pi 102 \pi 104 \sigma- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & \text { 100lp } 102 \pi 104 \mathrm{lp}- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 98 \sigma 99 \pi 104 \pi- \\ & 105 \pi 106 \pi 110 \sigma \end{aligned}$
12 (104)	$\begin{aligned} & 100 \pi 102 \pi 104 \pi- \\ & 106 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 100 \operatorname{lp} 102 \pi 104 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 99 \pi 102 \pi 104 \pi- \\ & 105 \pi 106 \pi 107 \pi \end{aligned}$
13 (104)	$\begin{aligned} & 99 \sigma 100 \pi 102 \pi- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & \text { 991p } 102 \pi 104 \mathrm{lp}- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 98 \sigma 99 \pi 104 \pi- \\ & 105 \pi 106 \pi 110 \sigma \end{aligned}$
14 (92)	$\begin{aligned} & 90 \pi 91 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 88 \operatorname{lp} 91 \operatorname{lp} 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 87 \pi 91 \pi 92 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$
15 (92)	$\begin{aligned} & 88 \sigma 90 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 88 \operatorname{lp} 90 \pi 92 \pi- \\ & 94 \pi 95 \pi 96 \pi \end{aligned}$	$\begin{aligned} & 87 \pi 90 \pi 92 \pi- \\ & 93 \pi 94 \pi 95 \pi \end{aligned}$
16 (105)	$\begin{aligned} & 103 \pi 104 \pi 105 \pi- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 100 \operatorname{lp} 101 \operatorname{lp} 105 \pi- \\ & 107 \pi 108 \pi 109 \pi \end{aligned}$	$\begin{aligned} & 103 \pi 104 \pi 105 \pi- \\ & 106 \pi 107 \pi 108 \pi \end{aligned}$
17 (96)	$\begin{aligned} & 91 \pi 94 \pi 96 \pi- \\ & 98 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 92 \operatorname{lp} 94 \pi 96 \pi- \\ & 98 \pi 99 \pi 100 \pi \end{aligned}$	$\begin{aligned} & 90 \pi 94 \pi 96 \pi- \\ & 97 \pi 98 \pi 99 \pi \end{aligned}$
18 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 112 \pi 113 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \mathrm{lp}- \\ & 110 \pi 112 \pi 124 \sigma \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 109 \pi 111 \pi 112 \pi \end{aligned}$
19 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 111 \pi 112 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 1081 p- \\ & 110 \pi 111 \pi 112 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 109 \pi 110 \pi 112 \pi \end{aligned}$
20 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 112 \pi 113 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 1081 \mathrm{p}- \\ & 110 \pi 112 \pi 124 \sigma \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 109 \pi 111 \pi 112 \pi \end{aligned}$
21 (108)	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 110 \pi 112 \pi 113 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 1081 \mathrm{p}- \\ & 110 \pi 111 \pi 112 \pi \end{aligned}$	$\begin{aligned} & 105 \pi 106 \pi 108 \pi- \\ & 109 \pi 111 \pi 112 \pi \end{aligned}$
22 (103)	$\begin{aligned} & 97 \sigma 100 \pi 101 \pi- \\ & 104 \pi 106 \pi 107 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 101 \pi 103 \mathrm{lp}- \\ & 104 \pi 106 \pi 107 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 101 \pi 103 \pi- \\ & 105 \pi 106 \pi 107 \pi \end{aligned}$
23 (103)	$\begin{aligned} & 100 \pi 101 \pi 103 \pi- \\ & 104 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 101 \pi 103 \pi- \\ & 104 \pi 107 \pi 108 \pi \end{aligned}$	$\begin{aligned} & 100 \pi 101 \pi 103 \pi- \\ & 105 \pi 106 \pi 108 \pi \end{aligned}$
24 (112)	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \pi$ -

	$115 \pi 116 \pi 117 \pi$	$114 \pi 115 \pi 116 \pi$	$113 \pi 114 \pi 115 \pi$
$25(112)$	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \mathrm{lp}-$	$109 \pi 111 \pi 112 \pi-$
	$114 \pi 115 \pi 116 \pi$	$114 \pi 115 \pi 116 \pi$	$113 \pi 114 \pi 116 \pi$
$26(112)$	$110 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \pi-$
	$114 \pi 115 \pi 116 \pi$	$114 \pi 115 \pi 116 \pi$	$113 \pi 114 \pi 115 \pi$
$27(112)$	$110 \pi 111 \pi 112 \pi-$	$109 \pi 111 \pi 112 \mathrm{lp}-$	$109 \pi 111 \pi 112 \pi-$
	$115 \pi 116 \pi 117 \pi$	$115 \pi 116 \pi 132 \pi$	$113 \pi 114 \pi 116 \pi$
$28(107)$	$104 \pi 106 \pi 107 \pi-$	$104 \pi 106 \pi 107 \mathrm{lp}-$	$104 \pi 106 \pi 107 \pi-$
	$108 \pi 111 \pi 112 \pi$	$108 \pi 111 \pi 112 \pi$	$109 \pi 110 \pi 112 \pi$

Molecular Electrostatic Potential (MEP)

The molecular electrostatic potential (MEP) gives a very general idea of the interactions in which a molecule can participate. The following figures show the MEP of the optimized geometries of the most active (molecule 21) and the least active molecule (molecule 14) in the plane defined by atoms 1, 2 and 3 [59]. They give an idea of the possible situation before reaching the receptor (inside the liquid biological milieu).

Figure 36: MEP of molecule 14 in the plane defined by atoms 1, 2 and 3 (isovalue $=0.02$, red is a positive MEP value, blue is a negative MEP value)

Figure 37: MEP of molecule 21 in the plane defined by atoms 1,2 and 3 (isovalue $=0.02$, red is a positive MEP value, blue is a negative MEP value)
Figures 38 to 41 show the MEP of molecules 14 and 21 at different distances from the nuclei [60].

Figure 38: MEP map of molecules 14 (upper left: face side; upper right: back side) and 21 (lower left face side; lower right back side) at $5.5 \AA$ of the nuclei.

Figure 39: MEP map of molecules 14 (upper left: face side; upper right: back side) and 21 (lower left face side; lower right back side) at $4.5 \AA$ of the nuclei

Figure 40: MEP map of molecules 14 (upper left: face side; upper right: back side) and 21 (lower left: face side; lower right: back side) at $3.5 \AA$ of the nuclei

Figure 41: MEP map of molecules 14 (upper left: face side; upper right: back side) and 21 (lower left face side; lower right: backside) at $2 \AA$ of the nuclei
The figures give a good idea of how the MEP changes as it is calculated closer and closer to the nuclei. The information that we lack is about the eventual changes that the conformations of the molecules studied here undergo as they approach the receptor and encounter the various amino acids. It can clearly be stated that in the case of a receptor that is on the surface of the structure that supports it, the interactions will be less complicated than in the case of a receptor that is inside a cavity. The need for the MEP of a molecule to match the MEP of the macromolecule can produce significant conformational changes.

Discussion

Equation 2.

Table 2 shows that the importance of variables in Eq. 2 is $\mathrm{S}_{5}{ }^{\mathrm{N}}>\mathrm{F}_{4}(\mathrm{HOMO}-2)^{*}>\mathrm{S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}>\mathrm{S}_{28}{ }^{\mathrm{E}}>$ $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*} \sim \mathrm{~F}_{29}(\mathrm{LUMO}+2)^{*}$. A high herbicidal activity is associated with large positive numerical values for $\mathrm{S}_{5}{ }^{\mathrm{N}}$, a large electron population in the third lowest occupied local MO localized on atom 4, large positive numerical values for $\mathrm{S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$, small negative values for $\mathrm{S}_{28}{ }^{\mathrm{E}}$, small positive numerical values for $\mathrm{S}_{4}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ and a small electron population in the third lowest occupied local MO localized on atom 29. Note that all these reactivity indices belong to ring A atoms or to substituents attached to it.
Atom 5 is a sp^{2} carbon in ring A (see Fig. 5). A high PPO inhibitory activity is associated with large positive numerical values for $\mathrm{S}_{5}{ }^{\mathrm{N}}$. From the definition of this reactivity index, we know that the first terms (the first three or four lowest empty MOs) are the dominant ones. Large positive values are obtained by shifting downwards the MO energy. The ideal situation is that molecule's LUMO, (LUMO+1) and (LUMO+2) be localized on this atom. Therefore, atom 5 seems to interact with an electron-rich center. This suggestion is consistent with the fact that atom 5 is bonded to a nitrogen and oxygen atoms. The ideal situation is that the three highest occupied local MOs of atom 5 be of pi nature.
Atom 4 is a sp^{2} carbon in ring A (see Fig. 5). Table 4 shows that the first lowest empty local MO, (LUMO)*, coincides with the molecule's molecular orbitals (LUMO+1) or (LUMO+2). The nature of this local MO is π in almost all molecules. A high PPO inhibitory activity is associated with large positive numerical values for $\mathrm{S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$. These values are obtained by shifting downwards the MO energy. The ideal situation would be when the molecular LUMO is localized on this atom. On this basis we suggest that this atom is interacting with an electron-rich center. Figures 42 to 47 show the electronic density of the three lowest empty local MOs of atom 4 of molecules 14 and 21. Also the electron density in the plane defined by atom 1, 2 and 3 is shown.

Figure 42: Molecule 14. Local (LUMO) ${ }_{4} *$ of atom 4 (This is molecular MO number 95). The 2 plane for electron density is defined by atoms 1, 2 and 3.

Figure 43: Molecule 14. Local (LUMO +1$)_{4} *$ of atom 4 (This is molecular MO number 97). The 2 D plane for electron density is defined by atoms 1, 2 and 3.

Figure 44: Molecule 14. Local (LUMO +2$)_{4} *$ of atom 4 (This is molecular MO number 111). The 2D plane for electron density is defined by atoms 1, 2 and 3 .

Figure 45: Molecule 21. Local (LUMO) 4^{*} of atom 4 (This is molecular MO number 110). The 2D plane for electron density is defined by atoms 1, 2 and 3.

Figure 46: Molecule 21. Local (LUMO +1$)_{4} *$ of atom 4 (This is molecular MO number 111). The 2D plane for electron density is defined by atoms 1, 2 and 3.

Figure 47: Molecule 21. Local (LUMO+2) ${ }^{*}$ of atom 4 (This is molecular MO number 112). The 2D plane for electron density is defined by atoms 1, 2 and 3.
On the other hand, a high inhibitory activity is associated also with a large electron population in the third lowest occupied local MO, (HOMO-2) 4^{*}. This local MO has π or σ nature (see Table 4). Theoretically this suggests the interaction with an electron-deficient center. This is contradictory to the previous condition, but one way to solve this issue is to propose that atom 4 interacts with two different sites in the receptor that are in opposite places.
Atom 26 is the substituent's atom directly bonded to C-1 (see Figs. 1 and 5). Table 1 shows that these substituents are: $\mathrm{H}, \mathrm{Me}, \mathrm{NO}_{2}, \mathrm{Br}$ and CF_{3}. A high PPO inhibitory activity is associated with large positive numerical values for $\mathrm{S}_{26}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$. This suggests that atom 26 should be interacting with an electron-rich center. This case presents us with an interpretation problem in the sense that atom 26 (substituent) may be interacting directly with the receptor site or it is simply accounting for the interaction of one of the atoms attached to it that is not included in the common skeleton. (LUMO +2$)_{26}{ }^{*}$ has a sigma nature in almost all the molecules (Table 5). Large numerical values for this reactivity index are obtained by shifting downwards the MO energy, making it more reactive. Therefore, the ideal situation is when the molecular LUMO, (LUMO+1) and (LUMO+2) are localized on this atom with the highest possible numerical value for the associated Fukui indices. $\mathrm{H}, \mathrm{C}\left(\mathrm{H}_{3}\right), \mathrm{N}\left(\mathrm{O}_{2}\right), \mathrm{Br}$ and $\mathrm{C}\left(\mathrm{F}_{3}\right)$ can interact with an electron-rich center but in different ways. Since this issue requires further investigation through the synthesis of new derivatives and some advances in theory, we will not propose any specific type of interaction for the moment.
Atom 28 is the substituent's atom directly bonded to C-3 (see Figs. 1 and 5). Table 1 shows that these substituents are: $\mathrm{H}, \mathrm{Me}, \mathrm{NO}_{2}, \mathrm{Cl}$ and CF_{3}. A high herbicidal activity is associated with small negative numerical values for $\mathrm{S}_{28}{ }^{\mathrm{E}}$. These values can be obtained by shifting downwards the MO energies of the highest occupied local MOs. This will transform atom 28 in a bad electron donor. This suggests that atom 28 should be interacting with an electron-rich center. For the same reasons invoked in the case of atom 26 we will refrain from suggesting the form of the interactions.
Atom 29 is the substituent's atom directly bonded to C-3 (see Figs. 1 and 5). A high herbicidal activity is associated with a small electron population in the third lowest occupied local MO localized on atom 29, (LUMO+2) 29 *. Substituents are H and OCH_{3}. Table 4 shows that all MOs are sigma. The local (LUMO)* coincides with empty molecular MOs that are energetically far from the molecular LUMO. Now we can only suggest that this atom interacts with an electron-rich site. For the same reasons invoked in the case of atom 26 we will refrain from suggesting the form of the interactions. All the suggestions are displayed in the partial 2D pharmacophore of Fig. 48.

Figure 48: Partial 2D pharmacophore for Eq. 2.

Discussion of Equation 3.

Table 7 shows that the importance of variables in Eq. 3 is $\mathrm{F}_{28}(\mathrm{LUMO}+1)^{*} \gg \mathrm{~S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}>\mathrm{Q}_{2}{ }^{\max }$. A high herbicidal activity is associated with high numerical values for $\mathrm{F}_{28}(\mathrm{LUMO}+1)^{*}$, high numerical positive values for $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ and high numerical positive values for $\mathrm{Q}_{2}{ }^{\text {max }}$.
Atom 28 is the atom of the substituent directly bonded to a carbon atom of ring A (see Table 1, Fig. 1, and Fig. 5). High numerical values for $\mathrm{F}_{28}(\mathrm{LUMO}+1)^{*}$ are required for high herbicidal activity. This suggests that an ideal activity is when $(\mathrm{LUMO}+1)_{28}{ }^{*}$ has a large Fukui index (i.e., the corresponding local MO is highly localized on this atom). This suggests that atom 28 is interacting with an electron-rich center. This suggestion is consistent with the one produced by Equation 2.
Atom 2 is a sp ${ }^{2}$ carbon in ring A (Fig. 1 and Fig. 5). Table 10 shows that all frontier local molecular orbitals have a π nature. As high herbicidal activity is associated with high numerical positive values for $\mathrm{Q}_{2}{ }^{\text {max }}$, the ideal situation is when (LUMO) $)_{2}{ }^{*}$ is highly localized on atom 2 in such a way that if can receive a good amount of charge. This suggests that atom 2 is interacting with an electron-rich center.
Atom 6 is a nitrogen atom in ring A (Fig. 1 and Fig. 5). Table 10 shows that (HOMO) $)_{2}{ }^{*}$ has a pi or lone pair nature, and that $(\mathrm{LUMO})_{2}{ }^{*}$ has a pi nature in all molecules. High numerical positive values for $\mathrm{S}_{6}{ }^{\mathrm{N}}(\mathrm{LUMO}+1)^{*}$ are associated with good herbicide activity. This suggests that atom 6 is interacting with an electron-rich center. All the above suggestions are displayed below in the partial 2D pharmacophore of Eqn. 3 and 4.

Discussion of Equation 4.

The only variable in Eq. 4 is $\mathrm{S}_{14}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$. Atom 14 is a sp ${ }^{2}$ carbon atom located in the chain linking rings B and C. Table 10 shows that the local HOMO* have a pi nature in all molecules. A high herbicidal activity is associated with high numerical negative values for $\mathrm{S}_{14}{ }^{\mathrm{E}}(\mathrm{HOMO})^{*}$. These highly negative values are obtained by shifting upwards the molecular orbital energy, bringing it closer to zero. This will make (HOMO) ${ }_{14}{ }^{*}$ highly reactive toward an electron-deficient center. Therefore, our suggestion is that atom 14 interacts with such a center. The above suggestions produced by Eq. 3 and 4 are displayed in the partial 2D pharmacophore of Fig. 49.

Figure 49: Partial 2D pharmacophore for Eq. 3 and 4
It should be mentioned that the fact that in pharmacophores more than one atom points towards a certain center does not imply that said center is common to those atoms.
In summary, for a series of biphenyl ether derivatives having a five-membered heterocycle we found excellent relationships between electronic structure and herbicidal activity. It is expected that the information provided here could be useful for experimentalists.
The author declares no competing financial interest and states that the research reported here meets the standards of the Singapore Statement on Research Integrity. In this paper artificial intelligence writing tools were not employed. Lic. Soloaga-Ardiles is thanked for preparing the first set of molecular coordinates and creating the rough copies of the Tables of local molecular orbitals.

References

[1]. Kobayashi, D.; Watanabe, E. Handbook on herbicides: biological activity, classification and health \& environmental implications. Nova Science Publishers: Hauppauge, N.Y., 2014; p xiii, 317 p.
[2]. Cobb, A. H. Herbicides and plant physiology. Third edition. ed.; John Wiley \& Sons: Chichester, West Sussex, 2022; p 1 online resource.
[3]. Rangani, G.; Salas-Perez, R. A.; Aponte, R. A.; Knapp, M.; Craig, I. R.; Mietzner, T.; Langaro, A. C.; Noguera, M. M.; Porri, A.; Roma-Burgos, N. A Novel Single-Site Mutation in the Catalytic Domain of Protoporphyrinogen Oxidase IX (PPO) Confers Resistance to PPO-Inhibiting Herbicides. Frontiers in Plant Science 2019, 10.
[4]. Zhao, L.-X.; Peng, J.-F.; Liu, F.-Y.; Zou, Y.-L.; Gao, S.; Fu, Y.; Ye, F. Design, synthesis, and herbicidal activity of diphenyl ether derivatives containing a five-membered heterocycle. Journal of Agricultural and Food Chemistry 2022, 70, 1003-1018.
[5]. Price, A.; Kelton, J.; Sarunaite, L. Herbicides: Physiology of Action and Safety. AvE4EvA: N/A, 2015.
[6]. Liu, H.-Y.; Yu, L.-K.; Qin, S.-N.; Yang, H.-Z.; Wang, D.-W.; Xi, Z. Design, Synthesis, and Metabolism Studies of N-1, 4-Diketophenyltriazinones as Protoporphyrinogen IX Oxidase Inhibitors. Journal of Agricultural and Food Chemistry 2023.
[7]. Zhao, L.-x.; Peng, J.-f.; Liu, F.-y.; Zou, Y.-1.; Gao, S.; Fu, Y.; Ye, F. Discovery of novel phenoxypyridine as promising protoporphyrinogen IX oxidase inhibitors. Pesticide Biochemistry and Physiology 2022, 184, 105102.
[8]. Liang, L.; Yu, S.; Li, Q.; Wang, X.; Wang, D.; Xi, Z. Design, synthesis, and molecular simulation studies of N-phenyltetrahydroquinazolinones as protoporphyrinogen IX oxidase inhibitors. Bioorganic \& Medicinal Chemistry 2021, 39, 116165.
[9]. Zhang, R.-B.; Yu, S.-Y.; Liang, L.; Ismail, I.; Wang, D.-W.; Li, Y.-H.; Xu, H.; Wen, X.; Xi, Z. Design, synthesis, and molecular mechanism studies of N-phenylisoxazoline-thiadiazolo [3, 4-a] pyridazine hybrids as protoporphyrinogen IX oxidase inhibitors. Journal of Agricultural and Food Chemistry 2020, 68, 1367213684.
[10]. Lee, W. H.; Kwon, Y. B.; Kim, J. H.; Lee, K. H.; Maezono, S. M. B.; Choi, J.-S.; Seu, Y.-B. Design and synthesis of acrylate and acrylamide substituted pyrimidinediones as potential PPO herbicides. Bioorganic \& Medicinal Chemistry 2021, 31, 115959.
[11]. Zhao, L.-X.; Jiang, M.-J.; Hu, J.-J.; Zou, Y.-L.; Gao, S.; Fu, Y.; Ye, F. Herbicidal activity and molecular docking study of novel PPO inhibitors. Weed Science 2020, 68, 565-574.
[12]. Selby, T. P.; Ruggiero, M.; Hong, W.; Travis, D. A.; Satterfield, A. D.; Ding, A. X. Broad-spectrum PPOinhibiting N-phenoxyphenyluracil acetal ester herbicides. In Discovery and Synthesis of Crop Protection Products, ACS Publications: New York, 2015; pp 277-289.
[13]. Zhao, L.-x.; Hu, J.-j.; Wang, Z.-x.; Yin, M.-l.; Zou, Y.-l.; Gao, S.; Fu, Y.; Ye, F. Novel phenoxy(trifluoromethyl) pyridine-2-pyrrolidinone-based inhibitors of protoporphyrinogen oxidase: Design, synthesis, and herbicidal activity. Pesticide Biochemistry and Physiology 2020, 170, 104684.
[14]. Gao, W.; Li, X.; Ren, D.; Sun, S.; Huo, J.; Wang, Y.; Chen, L.; Zhang, J. Design and synthesis of N-phenyl phthalimides as potent protoporphyrinogen oxidase inhibitors. Molecules 2019, 24, 4363.
[15]. Wang, D.-W.; Li, Q.; Wen, K.; Ismail, I.; Liu, D.-D.; Niu, C.-W.; Wen, X.; Yang, G.-F.; Xi, Z. Synthesis and herbicidal activity of pyrido [2, 3-d] pyrimidine-2, 4-dione-benzoxazinone hybrids as protoporphyrinogen oxidase inhibitors. Journal of Agricultural and Food Chemistry 2017, 65, 5278-5286.
[16]. Zuo, Y.; Wu, Q.; Su, S.-w.; Niu, C.-w.; Xi, Z.; Yang, G.-F. Synthesis, herbicidal activity, and QSAR of novel N-benzothiazolyl-pyrimidine-2, 4-diones as protoporphyrinogen oxidase inhibitors. Journal of Agricultural and Food Chemistry 2016, 64, 552-562.
[17]. Jiang, L.-L.; Tan, Y.; Zhu, X.-L.; Wang, Z.-F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.-F. Design, synthesis, and 3D-QSAR analysis of novel 1, 3, 4-oxadiazol-2 (3 H)-ones as protoporphyrinogen oxidase inhibitors. Journal of Agricultural and Food Chemistry 2010, 58, 2643-2651.
[18]. The results presented here are obtained from what is now a routinary procedure. For this reason, all papers have a similar general structure. This model contains standard phrases for the presentation of the methods, calculations and results because they do not need to be rewritten repeatedly and because the number of possible variations to use is finite. See: Hall, S., Moskovitz, C., and Pemberton, M. 2021. Understanding Text Recycling: A Guide for Researchers. Text Recycling Research Project. Online at textrecycling.org. In.
[19]. Gómez Jeria, J. S. La Pharmacologie Quantique. Bollettino Chimico Farmaceutico 1982, 121, 619-625.
[20]. Gómez-Jeria, J. S. On some problems in quantum pharmacology I. The partition functions. International Journal of Quantum Chemistry 1983, 23, 1969-1972.
[21]. Gómez-Jeria, J. S. Modeling the Drug-Receptor Interaction in Quantum Pharmacology. In Molecules in Physics, Chemistry, and Biology, Maruani, J., Ed. Springer Netherlands: 1989; Vol. 4, pp 215-231.
[22]. Gómez-Jeria, J. S.; Ojeda-Vergara, M. Parametrization of the orientational effects in the drug-receptor interaction. Journal of the Chilean Chemical Society 2003, 48, 119-124.
[23]. Gómez-Jeria, J. S. Elements of Molecular Electronic Pharmacology (in Spanish). 1st ed.; Ediciones Sokar: Santiago de Chile, 2013; p 104.
[24]. Gómez-Jeria, J. S. A New Set of Local Reactivity Indices within the Hartree-Fock-Roothaan and Density Functional Theory Frameworks. Canadian Chemical Transactions 2013, 1, 25-55.
[25]. Gómez-Jeria, J. S.; Espinoza, L. Quantum-chemical studies on acetylcholinesterasa inhibition. I. Carbamates. Journal of the Chilean Chemical Society 1982, 27, 142-144.
[26]. Gómez-Jeria, J. S.; Morales-Lagos, D. The mode of binding of phenylalkylamines to the Serotonergic Receptor. In QSAR in design of Bioactive Drugs, Kuchar, M., Ed. Prous, J.R.: Barcelona, Spain, 1984; pp 145-173.
[27]. Gómez-Jeria, J. S.; Morales-Lagos, D.; Rodriguez-Gatica, J. I.; Saavedra-Aguilar, J. C. Quantum-chemical study of the relation between electronic structure and pA2 in a series of 5 -substituted tryptamines. International Journal of Quantum Chemistry 1985, 28, 421-428.
[28]. Gómez-Jeria, J. S.; Sotomayor, P. Quantum chemical study of electronic structure and receptor binding in opiates. Journal of Molecular Structure: THEOCHEM 1988, 166, 493-498.
[29]. Gómez-Jeria, J. S.; Ojeda-Vergara, M.; Donoso-Espinoza, C. Quantum-chemical Structure-Activity Relationships in carbamate insecticides. Molecular Engineering 1995, 5, 391-401.
[30]. Gómez-Jeria, J. S.; Lagos-Arancibia, L.; Sobarzo-Sánchez, E. Theoretical study of the opioid receptor selectivity of some 7-arylidenenaltrexones. Boletin de la Sociedad Chilena de Quimica 2003, 48, 61-66.
[31]. Gómez-Jeria, J. S.; Gerli-Candia, L. A.; Hurtado, S. M. A structure-affinity study of the opioid binding of some 3-substituted morphinans. Journal of the Chilean Chemical Society 2004, 49, 307-312.
[32]. Soto-Morales, F.; Gómez-Jeria, J. S. A theoretical study of the inhibition of wild-type and drug-resistant HTV-1 reverse transcriptase by some thiazolidenebenzenesulfonamide derivatives. Journal of the Chilean Chemical Society 2007, 52, 1214-1219.
[33]. Barahona-Urbina, C.; Nuñez-Gonzalez, S.; Gómez-Jeria, J. S. Model-based quantum-chemical study of the uptake of some polychlorinated pollutant compounds by Zucchini subspecies. Journal of the Chilean Chemical Society 2012, 57, 1497-1503.
[34]. Bruna-Larenas, T.; Gómez-Jeria, J. S. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core. International Journal of Medicinal Chemistry 2012, 2012 Article ID 682495, 1-16.
[35]. Alarcón, D. A.; Gatica-Díaz, F.; Gómez-Jeria, J. S. Modeling the relationships between molecular structure and inhibition of virus-induced cytopathic efects. Anti-HIV and anti-H1N1 (Influenza) activities as examples. Journal of the Chilean Chemical Society 2013, 58, 1651-1659.
[36]. Muñoz-Gacitúa, D.; Gómez-Jeria, J. S. Quantum-chemical study of the relationships between electronic structure and anti influenza activity. 1. The inhibition of cytophatic effects produced by the influenza A/Guangdong Luohu/219/2006 (H1N1) strain in MDCK cells by substituted bisaryl amide compounds. Journal of Computational Methods in Molecular Design 2014, 4, 33-47.
[37]. Muñoz-Gacitúa, D.; Gómez-Jeria, J. S. Quantum-chemical study of the relationships between electronic structure and anti influenza activity. 2. The inhibition by $1 \mathrm{H}-1,2,3$-triazole-4-carboxamide derivatives of the cytopathic effects produced by the influenza A/WSN/33 (H1N1) and A/HK/8/68 (H3N2) strains in MDCK cells. Journal of Computational Methods in Molecular Design 2014, 4, 48-63.
[38]. Gómez-Jeria, J. S.; Robles-Navarro, A. A Density Functional Theory and Docking study of the Relationships between Electronic Structure and $5-\mathrm{HT}_{2 \mathrm{~B}}$ Receptor Binding Affinity in N-Benzyl Phenethylamines. Der Pharma Chemica 2015, 7, 243-269.
[39]. Gómez-Jeria, J. S.; Robles-Navarro, A. Quantum-chemical study of the cytotoxic activity of pyrimidinebenzimidazol hybrids against MCF-7, MGC-803, EC-9706 and SMMC-7721 human cancer cell lines. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015, 6, 755-783.
[40]. Gómez-Jeria, J. S.; Valdebenito-Gamboa, J. Electronic structure and docking studies of the Dopamine D ${ }_{3}$ receptor binding affinity of a series of [4-(4-Carboxamidobutyl)]-1-arylpiperazines. Der Pharma Chemica 2015, 7, 323-347.
[41]. Gómez-Jeria, J. S.; Garrido-Sáez, N. A DFT analysis of the relationships between electronic structure and affinity for dopamine D_{2}, D_{3} and D_{4} receptor subtypes in a group of 77-LH-28-1 derivatives. Chemistry Research Journal 2019, 4, 30-42.
[42]. Gómez-Jeria, J. S.; Gatica-Díaz, N. A preliminary quantum chemical analysis of the relationships between electronic structure and $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinity in a series of 8-acetyl-7-hydroxy-4methylcoumarin derivatives. Chemistry Research Journal 2019, 4, 85-100.
[43]. Gómez-Jeria, J. S.; Sánchez-Jara, B. An introductory theoretical investigation of the relationships between electronic structure and A1, A2A and A3 adenosine receptor affinities of a series of N6-8,9-trisubstituted purine derivatives. Chemistry Research Journal 2019, 4, 46-59.
[44]. Gómez-Jeria, J. S.; González-Ponce, N. A Quantum-chemical study of the relationships between electronic structure and affinities for the serotonin transporter protein and the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor in a series of 2 H -pyrido[1,2-c]pyrimidine derivatives. Chemistry Research Journal 2020, 5, 16-31.
[45]. Gómez-Jeria, J. S.; Rojas-Candia, V. A DFT Investigation of the Relationships between Electronic Structure and $\mathrm{D}_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~A}}, 5-\mathrm{HT}_{6}$ and $5-\mathrm{HT}_{7}$ Receptor Affinities in a group of Fananserin derivatives. Chemistry Research Journal 2020, 5, 37-58.
[46]. Gómez-Jeria, J. S.; Soloaga Ardiles, C. E.; Kpotin, G. A. A DFT Analysis of the Relationships between Electronic Structure and Human κ, δ and μ Opioid Receptor Binding Affinity in a series of Diphenethylamines. Chemistry Research Journal 2020, 5, 32-46.
[47]. Gómez-Jeria, J. S.; Robles-Navarro, A.; Soza-Cornejo, C. A note on the relationships between electronic structure and serotonin $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity in a series of 4-butyl-arylpiperazine-3-(1 H -indol-3-yl)pyrrolidine-2,5-dione derivatives. Chemistry Research Journal 2021, 6, 76-88.
[48]. Gómez-Jeria, J. S.; Ibertti-Arancibia, A.; Olarte-Lezcano, L. A theoretical study of the relationships between electronic structure of 2-aryladenine derivatives and percentage of inhibition of radioligand binding in human $\mathrm{A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors. Chemistry Research Journal 2022, 7, 1-18.
[49]. Gómez-Jeria, J. S.; Olarte-Lezcano, L. On the relationships between electronic structure and 5-HT $\mathrm{HA}_{2 \mathrm{~A}}$, 5$\mathrm{HT}_{2 \mathrm{C}}$ and D_{2} receptor affinities in a group of 2-aryl tryptamines. A DFT study. Chemistry Research Journal 2022, 7, 14-35.
[50]. Gómez-Jeria, J. S.; Pinto-Saldaña, M. Electronic structure and $\mathrm{D}_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~A}}$ and H_{3} receptor affinities of some multi-target heterocycle piperazine derivatives. A DFT and FQSAR study. Chemistry Research Journal 2022, 7, 52-83.
[51]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P. Gaussian 16 16Rev. A.03, Gaussian: Pittsburgh, PA, USA, 2016.
[52]. Gómez-Jeria, J. S. D-Cent-QSAR: A program to generate Local Atomic Reactivity Indices from Gaussian16 log files, v. 1.0; Santiago, Chile, 2020.
[53]. Gómez-Jeria, J. S. An empirical way to correct some drawbacks of Mulliken Population Analysis (Erratum in: J. Chil. Chem. Soc., 55, 4, IX, 2010). Journal of the Chilean Chemical Society 2009, 54, 482-485.
[54]. Statsoft. Statistica v. 8.0, 2300 East 14 th St. Tulsa, OK 74104, USA, 1984-2007.
[55]. Gómez-Jeria, J. S.; Robles-Navarro, A.; Kpotin, G.; Garrido-Sáez, N.; Gatica-Díaz, N. Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. Chemistry Research Journal 2020, 5, 32-52.
[56]. Hypercube. Hyperchem 7.01, 7.01; 419 Phillip St., Waterloo, Ontario, Canada, 2002.
[57]. Chemaxon. MarvinView, 23.1.0; www.chemaxon.com: USA, 2023.
[58]. Systèmes, D. BIOVIA Discovery Studio Visualizer v. 20.1, San Diego: Dassault Systèmes, 2019.
[59]. Dennington, R. D.; Keith, T. A.; Millam, J. M. GaussViev 5.0.8, GaussViev 5.0.8, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA, 2000-2008.
[60]. Varetto, U. Molekel 5.4.0.8, Swiss National Supercomputing Centre: Lugano, Switzerland, 2008.

