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Abstract A formal expression for the electrostatic contribution to the chemical potential is discussed. A function 

describing the variation of the dielectric constant with the distance from the ion is analyzed. It is concluded that in 

the regions of the solvent presenting an ideally complete saturation of the orientational polarizability, the entropic 

destabilization is exactly counterbalanced by the enthalpic stabilization of the solvent. The only contributions are 

those coming from those regions where thermal agitation hinders the alignment of the solvent’s dipoles in the 

solute’s dielectric displacement. It is suggested that Born radius is a way of incorporating dielectric saturation as a 

radial increment. 

 

Keywords Chemical potential, orientational polarizability, dielectric constant, Born radius, dielectric saturation 

Introduction 

The chemical potential of solvation (CPS) governs the degree of spontaneity of the dissolution process. For ionic 

solvation, the main contribution to CPS is of electrostatic nature. By analyzing solvation thermodynamics by means 

of classical electrostatics (Reaction Field Theory, RFT) [1], we derived the following general expression for the 

electrostatic contributions to CPS, elΔμ , for the case of unpolarizable ionic solutes [2, 3]: 
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where N0 is the Avogadro’s number, Q is the ion net charge assumed to be punctual and centered in an empty 

spherical cavity of radius r0 and ε® is a function to be specified describing the variation of the dielectric constant 

with the distance to the ion when final equilibrium is attained. Eq. 1 can be applied to ideal dilute solutions under 

isothermic and isobaric conditions. Its inspection shows a quadratic dependence upon the charge. In addition, it 

predicts that large variations of ε near the ion facilitate the dissolution process. Those regions presenting a constant ε 

do not contribute to Δμel. 

On the other hand, it is known that Born Equation (BE) considers the solvent as a continuous dielectric medium 

characterized by the macroscopic dielectric constant of the pure solvent, εb, giving the following expression for Δμel 

[4]: 
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It can be shown that BE is a particular limit case of Eq. 1 arising from the discontinuity of ε at r0. Then, in the RFT 

framework, BE is the upper bound to |Δμel| because it maximizes the gradient of ε and minimizes the distance 

between the ion and the largest ε derivative value. 

Physical arguments led to consider the ε(r) function shown in Fig. 1 [2, 3, 5]. 

 
Figure 1: Plot of ε against the distance to the ion showing Regions I, II and III 

This function shows three main regions, named I, II and III. Region I is absent when the solvent polarity and/or the 

ionic charge are small. The foregoing discussion is restricted to non-associated, very polar solvents displaying only 

orientational polarization and at the limit of a high ionic charge. Region I has an ideally complete dielectric 

saturation of the orientational polarizability (DSOP) neglecting electrostriction. In Region II, the orienting effect of 

the solute’s dielectric displacement and the disorganizing effect of thermal agitation compete. In Region III, the 

effect of the solute on the solvent is negligible. 

For the physical situations described by this model, only region II contributes to Eq. 1. Region III is not affected by 

the insertion process due to the screening of the solute’s dielectric displacement by the internal regions. On the other 

hand, the fact that region I does not contribute to Δμel because it has a constant ε is an unexpected conclusion. The 

only way to preserve the internal coherence of the model is by suggesting that in those regions of the solvent 

presenting an ideally complete DSOP, the entropic destabilization (produced by the antiparallel dipole alignment of 

the solvent), is exactly counterbalanced by the enthalpic stabilization of the solvent dipoles. This implies that Δμel=0 

in Region I. This model may be useful to understand liquid crystals and ferroelectric materials because they present 

a high orientational polarizability. 

The analysis of Region II suggests that the directing forces determining the degree of spontaneity of ionic solvation 

are regulated by the balance of thermal agitation effects (identified to an enthalpic term), and the dominant effect of 

the orientation of the solvent’s dipoles in the field (attributed to the enthalpic term). The effects of small variations 

of the temperature on Δμel may be easily visualized in terms of the abovementioned equilibrium and Fig. 1. Fir rigid 

solvent molecules, the change in the dipole alignment with increasing temperature affects Region II but not Region 

I. This induces a shift of the outer limit of Region II toward the ion, increasing the slope of the curve (see Fig. 1). 

Therefore, according to Eq. 1, the solubility raises. This analysis is valid for solvents fulfilling the condition 

(∂ε/∂T)P=0. For the other cases, a lowering or a rising of (∂ε/∂T)P raises or lowers εB respectively. This has an 
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additional but weak effect upon the gradient of region II that can be included for each particular case. Even if εB 

changes with temperature, it remains constant in Region II. 

For processes of ionic dissolution under isothermic and isochoric conditions the above reasoning can be applied by 

considering the Helmholtz free energy, internal energy and entropy state functions. Another important consequence 

of Eq. 1 regards the physical interpretation of the Born radius, rB [6, 7]. The application of BE using crystalline radii 

systematically overestimates the experimental value of Δμel [8]. It has been shown that the parameterization of r0 in 

Eq. 2 giving rB (rB>r0) provides surprisingly good results. At present, the physical meaning of rB and its dependence 

upon the temperature and the charge of the solute are the subject of discussion [9]. 

As a first approach to the understanding of this problem, we shall consider the unipolar term of Beveridge and 

Schnuelle’s model [10]. This model considers a spherical ion with radius r0 surrounded by a dielectric layer of 

thickness Δr0 and permittivity εB. This model considers a spherical ion with radius r0 surrounded by a dielectric layer 

of thickness Δr0 and permittivity εII, embedded in an infinite dielectric characterized by εB. Their Modified Born 

Equation is also a particular case of Eq. 1 because of the discontinuities of ε in the surfaces limiting the dielectrics 

(Eq. 40 with n=0 in Ref. 10). Assuming an ideally complete DSOP in the local dielectric region (i.e., εII—>1), 

together with complete screening of the solute’s dielectric displacement (i.e., the external region is not affected), it is 

possible to recover Eq. 2 in which r0 was replaced by r0+Δr0. We identify this last expression as the Born radius. 

This immediately suggests that rB is principally a consequence of the microscopic phenomenon called dielectric 

saturation and that Δr0, depending upon Q, can be interpreted as the limit of the average extent of the DSOP. 

Mathematically, the Born radius is the a way of incorporating dielectric saturation as a radial increment and not as a 

reduction of ε. Solvents with (∂ε/∂T)P≈0 will show a decrease of Δr0 with raising temperature. This effect will be 

more noticeable for flexible solvent molecules. Within this context, the empirical values of rB are theoretically 

important because they contain information concerning the real importance of dielectric saturation as the 

determining factor for the microscopic structure of the solvent in the ion’s vicinity. The, even when ε is a 

macroscopic mean value, the statement that “dielectric saturation and a charge-dependent Born radius are two 

manifestations of the same phenomenon at a microscopic level” is erroneous [9]. In addition, it is expected that Δr0 

should be small for anions because dielectric saturation is higher due to the smaller charge/radius ratio. 

This analysis can be generalized for prolate spheroidal ions, starting from [5]: 
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where 2d is the interfocal distance and λ the prolate coordinate describing surfaces with this symmetry. The oblate 

spheroidal case is analogous to Eq. 3, but replacing the natural logarithm by cot-1(λ). The results are similar. Finally, 

the above analysis can be strictly applied to higher order multipoles even when DSOP is absent or small. 
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