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Abstract The toll‐like receptor (TLR) household consists of critical receptors accountable for pattern 

recognition in innate immunity, making them the core proteins concerned in pathogen detection and eliciting 

immune responses. The most studied member of this family, TLR4, has been the core of interest concerning its 

contributory position in many inflammatory ailments along with sepsis shock and asthma. Notably, mounting pieces 

of proof have proved that this receptor is aberrantly expressed on the tumor cells and the tumor microenvironment in 

a vast range of most cancers sorts and it is highly related with the initiation of tumorigenesis as nicely as tumor 

progression and drug resistance. Cancer remedies the use of TLR4 inhibitors has currently drawn scientists’ 

attention, and the promising outcomes of such research may additionally pave the way for more investigation in the 

foreseeable future. This evaluation will introduce the key proteins of the TLR4 pathway and how they have 

interaction with foremost boom elements in the tumor microenvironment. Moreover, we will talk about the many 

factors of tumor progression affected by using the activation of this receptor and furnish an overview of the current 

therapeutic processes the use of a range of TLR4 antagonists. 
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1. Introduction 

Toll‐like receptors (TLRs) are a family of pattern‐recognition receptors mostly expressed on the surface of cells 

involved in innate immunity; they can also be expressed and translocate into endosomes. Toll-like receptors (TLRs) 

play a key role in the activation of innate immunity due to their ability to recognize highly conserved molecules 

expressed by pathogens. Alongside pathogens associated molecular patterns (PAMPs) [1]. TLRs can also detect 

endogenous ligands (alarmins, also called danger-associated molecular patterns or DAMPs). TLR is a trans-

membrane protein of type I that has an extracellular domain and an intracellular domain. Alarmins are excreted by 

cells in response to tissue injury or cell death, but their overproduction has been linked to autoimmune diseases and 

cancer [2]. Cell death and chronic inflammation are key features of tumorigenesis, resulting in increased alarmin 

production in many types of cancer, including breast, colon, pancreatic, melanoma, and glioblastoma. There are 

currently 11 mammalian TLRs known. TLR4 is one of the most extensively researched TLRs. The majority of 
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studies on Toll-like receptors (TLRs) have concentrated on their expression pattern and function in immune system 

cells. TLR expression and function in cancer cells, as well as the links between TLRs and oncogenesis and tumour 

progression, have recently sparked considerable interest [3]. The first member of this family was discovered in 

Drosophila, and based on its homology. The first mammalian TLR was TLR4 identified in human monocytes in 

1997 by Medzhitov et al. (1997). TLRs' ability to detect foreign materials, known scientifically as pathogen-

associated molecular patterns (PAMPs), allows them to play an important role in the activation of innate and then 

adaptive immune responses by initiating a downstream signaling cascade that results in the release of various types 

of cytokines and chemokines, as well as immune cell maturation. TLR4 has been the focus of scientific attention in 

recent years as one of the most important members of the TLR family [4]. This receptor is best known for its ability 

to detect the main PAMP, lipopolysaccharide (LPS) from gram negative bacteria. TLRs in general, and TLR4 in 

particular, are implicated in many cancer types in the current literature. However, data linking TLRs to breast cancer 

are very limited, and it is unclear whether the effect of TLR4 on breast tumorigenesis is due to cancer cell intrinsic 

or immune-mediated effects. TLR-induced pro-inflammatory reactions have long been the subject of extensive 

research in the field due to the possibility of using them for cancer immunotherapy [5]. In this review, we will first 

discuss the dual role of TLR ligands in cancer progression and therapy, as well as the rationale for using these agents 

to treat cancer. 
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Overview of TLRs 

TLRs were first linked to immune responses when it was discovered that mutations in the Drosophila toll receptor 

resulted in a high susceptibility to fungal infections and a defective production of antifungal peptides. TLR4 and 

MyD88 have been found to be overexpressed in breast cancer, implying a role for the TLR4 signaling pathway in 

the tumour microenvironment. TLRs send signals to the nucleus via adaptor proteins, where they regulate the innate 

and adaptive immune responses. Since Deidier discovered that patients infected with syphilis developed very few 

malignant tumours nearly 300 years ago, it has been known that bacterial infection can cause cancer remission by 

activating the immune system [6,7]. TLR4 is expressed not only on tumour cells but also on stromal and immune 

cells, which play an important role in antitumor immunity in the tumour microenvironment. TLRs are crucial in 

tissue repair and regeneration. TLR signaling pathways activation can result in increased transcription of genes 

encoding type I interferons (INF), various pro-inflammatory cytokines such as TNF-, IL-1, and IL-6, as well as anti-

inflammatory molecules such as IL-10, COX-2, and prostaglandin E2. TLR4 activation in the tumour 

microenvironment has been shown to boost antitumor immunity, including dendritic cell (DC) maturation and 

antigen presentation. It should be noted, however, that the type and level of cytokines induced are primarily 

determined by the type of TLR-activated cells [8,66]. TLR4 activation in macrophages, for example, results in the 

secretion of pro-inflammatory cytokines such as TNF- and IL-1ß, whereas TLR4 activation in DCs primarily 
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induces the secretion of IL-12 [65]. Furthermore, the type of activated TLR can influence the type of cytokines that 

are predominantly secreted as a result of activation. Ligation of 9 out of 10 human TLR homolog’s with 

PAMP/DAMP agonists can activate a common signaling pathway mediated by the interaction of their TIR signaling 

domains with the adaptor protein myeloid differentiation factor 88 (MyD88), resulting in the initiation of a complex 

cascading series of interactions with downstream cytoplasmic proteins. [9,10] 

 

Types of TLRs 

TLR family members have been identified in humans 10 times and in mice 13 times. There are 11 mammalian TLRs 

that have been identified. TLR4 is one of the most extensively researched TLRs. TLR1, 2, 4, 5, 6, and 10 are 

primarily expressed on the plasma membrane, from which they migrate to phagosomes after ligation with their 

respective agonists [11]. These can mostly recognise bacterial organisms' outer components, such as the lipoprotein 

of Gram-positive bacteria (TLR1, 2, 6, and 10), the lipopolysaccharide (LPS) of Gram-negative bacteria (TLR4), 

and the flagellin of bacterial flagella (TLR5). TLR3, 7, 8, and 9, on the other hand, are found on the endosomal 

compartment and are mostly capable of alerting the host to intracellular infections by recognising bacterial or viral 

nucleic acids [12]. TLR2 recognises a variety of bacterial components, including peptidoglycan, lipopeptides, and 

lipoproteins from gram-positive bacteria and mycoplasma. TLR3 recognises them and causes T cells to activate. 

TLRs are thought to be an important link between the adaptive and innate immune systems. INFs are the most 

common cytokines secreted in response to TLR3, 7, 8, and 9, whereas TNF- and IL-12 are commonly secreted in 

response to TLR2 and 4 [13].                

TLRs Ligands 

TLR1 Triacyl lipopeptides 

TLR2 Lipoprotein/lipopeptides, peptidoglycan, lipoteichoic acid, etc 

TLR3 Double-stranded RNA 

TLR4 LPS, HSP60, etc, commensal bacteria 

TLR5 Flagellin 

TLR6 Diacyl lipopeptides, Zymosan, Peptidoglycan/Lipoteichoic acid 

TLR7 Imidazoquinoline, Synthetic Compounds (the immune response modifiers) 

TLR8 Single-stranded RNA 

TLR9 CpG-DNA, Bacterial DNA 

TLR10 Unknown 

 

Types of TLRs 

TLR Signaling 

Mammalian TLRs are made up of an extracellular domain with leucine-rich repeats for ligand binding, a 

transmembrane region, and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain for intracellular signaling. TLRs 

localise in different subcellular compartments depending on the component with which they interact [14]. TLRs that 

recognise lipid and protein ligands (i.e., TLR1, TLR2, TLR4, TLR5, and TLR6) are thus expressed on the plasma 

membrane, whereas TLRs that detect nucleic acids (i.e., TLR3, TLR, and TLR9) are expressed in endolysosomes. 

TLR-induced intracellular signaling is archived by one of four adaptor proteins: -  

1. myeloid differentiation factor 88 (MYD88),  

2. TIR-domain-containing adaptor inducing IFNβ (TRIF),  

3. TIR domain-containing adaptor protein (TIRAP) 

4.  TRIF-related adaptor molecule (TRAM) 

TLRs (except TLR3) and IL-1 receptor family members communicate via MYD88. TLR3 communicates via TRIF, 

whereas TLR4 communicates via both the MYD88 and TRIF pathways [15,16]. TLR binding activates nuclear 

factor B (NFB), mitogen-activated protein kinases (MAPKs) such as c-JUN N-terminal kinases (JNKs), p38 and 

extracellular signal-regulated kinases (ERKs), and IFN-regulatory factors 3, 5, and 7 (IRF3, IRF5, and IRF7) 

signaling pathways. Both innate and adaptive immune responses rely on these signals [17,67]. 
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TLR4 Signaling 

TLR4 is the only TLR known to date that can signal via both MYD88-dependent and MYD88-independent 

(TRIFdependent) pathways. The MYD88-dependent signaling pathway was shown to be responsible for pro-

inflammatory cytokine expression in studies using MYD88-deficient macrophages, whereas the MYD88-

independent pathway appears to mediate the induction of Type I IFNs and IFN-inducible genes [18,19]. MYD88-

dependent signaling pathway Upon LPS stimulation, the TLR4 signaling complex's MYD88 subunit recruits and 

activates a death domain (DD)-containing kinase, IL-1 receptor-associated kinase 4. (IRAK-4). IRAK-4 is an IRAK 

protein that contains both death and kinase domains. MYD88 also contains a DD that, through homotypic 

interactions, can recruit other DD-containing molecules [20,68]. 

 

                                                 
TLR4 Signaling 
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IRAK-4, like MYD88, plays an important role in the cytokine response to LPS stimulation. When stimulated with 

LPS, macrophages lacking IRAK-4 produce significantly less pro-inflammatory cytokines. In fact, mice lacking 

IRAK-4 are resistant to LPS-induced septic shock [21]. According to biochemical evidence, IRAK-4 activation is 

responsible for the subsequent recruitment, activation, and degradation of IRAK-1. Interestingly, IRAK-1-deficient 

mice produce some cytokines in response to LPS stimulation, implying that other molecules are involved in IRAK-4 

downstream signaling [22]. Recent evidence suggests that IRAK-2 is involved in this process. The activation of 

TNF receptor-associated factor 6 is the next step after IRAK-1 activation (TRAF6). TRAF6 forms a complex with 

ubiquitin-conjugating enzyme 13 (UBC13) and ubiquitin-conjugating enzyme E2 variant 1 isoform A (UEV1A), 

activating TGFβ-activated kinase 1(TAK1) [23]. TAK1 then stimulates the NFκB and MAPK signaling pathways. 

TAK1 specifically activates the inhibitor of kappa-B (IκB) kinase (IKK), which is composed of the IKKα, IKKβ, 

and IKKγ subunits, to phosphorylate IκB proteins. Phosphorylation of IκB results in its degradation, which allows 

for the nuclear translocation of NFκB, which regulates the expression of pro-inflammatory cytokines and other 

immune-related genes [24]. TLR4 activation activates the transcription factor activator protein-1 (AP-1) signaling 

pathway, which controls the expression of pro-inflammatory cytokines. Another effector activated by the TRIF 

pathway is IRF3. Evidence suggests that IRF3 is not activated by RIPK1. TRAF3 has been linked to this process and 

the subsequent induction of type I IFNs [25]. TRAF3 can interact with TRAF family member-associated NFκB 

activator (TANK), TANK binding kinase 1 (TBK1), and IKKi to mediate downstream signaling. TBK1 and IKKi 

are required for IRF3 dimerization and translocation. IFN and IFN-inducible gene induction is critical for antiviral 

and antibacterial responses.  

 
TLR4 Signaling 

 

The Relation Between TLR4 and T Cells in Tumor Microenvironment 

CD4+ T cells can be divided into Th1, Th2, T helper 17 (Th17), regulatory T (Treg), and T follicular helper cells, all 

of which play a dynamic role in immune responses to infectious diseases as well as cancer. TLR4 agonists such as 

glucopyranosyl lipid A-stable emulsion (GLA-SE) and LPS can boost the Th1 response. According to research, 

synthetic GLA can definitely upregulate the CD4+ T cell response by increasing IFN-γ and TNF production [26,69]. 

Consistently, recent studies confirmed the existence of CD4+ CTLs, newly discovered members with the function of 
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killing autologous B cells presenting MHC II complex, implying the pivotal role of TLR4 in activating CD4+CTLs 

[27]. This newly defined CD4+ T cell function is dependent on CD40L engagement of CD40 in target cells rather 

than a previously discovered specific CTL mechanism. CD4 CTL expressed some markers associated with CD8 

CTL cytotoxic functions, such as natural killer group 2 (NKG2A) and NKG2D. Given the importance of CD4 CTLs 

in the control of HIV, malaria, and other infections, it is intriguing to speculate on the activity of CD4 CTLs in the 

tumour environment following TLR4 agonist adjuvant [28]. Nonetheless, a review found that CD4 CTL affect both 

protective and pathogenic immunity, implying that the function of CD4 CTL on tumour cells in the tumour 

microenvironment should be investigated further. 

 

Expression of TLRs in Different Types of Cancer 

TLRs are expressed by antigen-presenting cells (such as dendritic cells and macrophages), fibroblasts, and epithelial 

cells, and their primary function is to protect the host from microbial infection [29]. However, functional TLRs are 

found on cancer cells, and their expression is frequently linked to disease prognosis. The same receptor can be 

associated with either a good or a bad prognosis (as in TLR9), or it can be associated with a bad outcome in general 

(like TLR4) [30]. This makes studying TLRs as a whole in the context of oncogenesis and cancer progression 

difficult, and suggests that studying single receptors in specific types of cancer may be a better approach. Different 

cell populations (for example, cancer stem cells, cancer cells, tumor-infiltrating lymphocytes, tumor associated 

fibroblasts, etc.) may express different TLRs and, as a result, respond differently to TLR stimulation [31].  TLR 

expression in normal, pre-malignant, and malignant esophageal and oral cavity epithelium is discussed in a recent 

review. It focuses on TLR2, 4, and 5, which are normally expressed on cell membranes but increase in expression 

and become more cytoplasmic during dysplasia and cancer. It is concluded that changes in TLR locations and 

constitutive activation can result in chronic inflammation and tumour progression rather than transient inflammation 

and tumour eradication [32]. TLR expression and the direct pro- and anti-tumor effects of TLR ligands on cancer 

cells have recently been studied.  Glioblastoma stem cells have very low TLR4 expression compared to non-stem 

cells and do not respond to TLR4 stimulation, allowing them to survive in the face of immune signaling. The authors 

demonstrate a direct relationship between TLR4 signaling and stemness, and they propose a treatment strategy based 

on TLR4 re-expression. Despite low TLR4 expression, glioblastoma stem cells express high levels of TLR2, and 

stimulation of TLR2 by high-mobility group box 1 (HMGB1) increased stemness markers in those cells [33]. 
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Expression of TLRs in Different Types of Cancer 

TLR4 and Breast Cancer 

The relationship between TLR4 and breast cancer has been studied from various perspectives, yielding several 

intriguing results. At the cellular level, after systemic administration of LPS, breast cancer cells exhibit increased 

migration, invasion, and angiogenetic behaviour at secondary sites [34]. The intraperitoneal injection of LPS into 

BALB/c mice with metastatic breast adenocarcinomas derived from 4T1 cells promoted angiogenesis both in vivo 

and in vitro. Furthermore, activation of TLR4 on metastatic breast cancer cells has been shown to regulate the 

expression of integrin αvβ3, TPM1, and maspin, and thus to promote cancer cell αvβ3-mediated adhesion and 

invasiveness [35]. Finally, TLR4 signaling appears to boost miR-21 expression in breast cancer cells by activating 

NFκB. As a result of TLR4-induced NFκB activation, breast cancer cells may develop a high metastatic potential. 

TLR4 is expressed by 20% of mononuclear inflammatory cells in the breast tumour micro-environment, and TLR3, 

TLR4, and TLR9 expression levels have been proposed as indicators of tumour aggressiveness [36,70]. TLR4 was 

found to be expressed at higher levels than any other TLR in the human breast cancer cell line MDA-MB-231. 

TLR4 knockdown resulted in a significant decrease in cell viability as well as IL-6 and IL-8 secretion. TLR4 

knockdown inhibits the survival and proliferation of breast cancer cells, according to this study [37]. 

 

Anti-tumor Role of TLR Stimulation 

Antitumor properties of bacteria and their products have long been known. Deidier's initial work was followed by 

Coley's development of a sarcoma treatment using a mixture of bacterial toxins. Coley's findings were not widely 

accepted by medical society due to inconsistencies and were not followed for a long time; however, he is now often 

referred to as the "Father of Immunology." Many years later, lipopolysaccharide (LPS), an outer membrane 

component of Gram-negative bacteria, was identified as an active fraction of Coley's toxin, implying the 

involvement of TLR4 activation [38,39]. Because of their systemic toxicity, LPS and other bacterial products must 

be administered locally, frequently via intra-tumoral injection. An attenuated strain of Clostridium novyi was 

recently shown to effectively reduce tumour size not only in a rat model but also in dogs with spontaneous solid 

tumours and one sarcoma patient. Clostridium novyi spores germinate only in hypoxic regions of cancerous tissue 

and induce an immune response, most likely through TLR activation [40]. Bacillus Calmette-Guérin (BCG), an 

attenuated strain of Mycobacterium bovis developed as a tuberculosis vaccine, has been used as a treatment for 

bladder cancer for over 40 years. The precise mechanism of BCG action is unknown, but its anti-cancer effect is 

caused by both the direct effect of BCG infection on cancer cells and the immune response to it. BCG, a TLR2/4 

ligand, is one of three TLR ligands approved by the FDA [41]. TLR4 ligand monophosphoryl lipid A (MPLA) and 

TLR7 agonist imiquimod are the others. Although TLR ligands can be effective as monotherapy, they are typically 

used in combination therapy, often acting as vaccine adjuvants. Their efficacy as immunotherapeutic agents is 

primarily dependent on the induction of T-cell immunity—antigen uptake, processing and presentation, dendritic 

cell maturation, and T cell activation [42]. PAMP/DAMP binding to TLR on immature antigenpresenting cells 

(APCs) causes them to mature into professional APCs capable of presenting antigens (e.g., bacterial or cancer) on 

major histocompatibility complex I. (MHC I) [43,44]. 

 

Role of TLR Adaptor Proteins in Cancer 

Because TLRs bind to cell membranes, TLR signaling is transmitted through adaptor proteins such as myeloid 

differentiation primary response-88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF).[44] 

TNF-α, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon gamma-induced protein 10 (IP-10), and IFN-γ are 

all induced by MyD88 and TRIF signaling via the transcriptional factors NF-κB, activator protein 1 (AP-1), and 

interferon regulatory factor 3. (IRF-3). Furthermore, MyD88 activation can trigger signaling cascades involving c-

Jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK), leading to cell survival and 

proliferation [45]. MyD88 can also communicate with TLRs via interleukin (IL)-1 receptor families. Except for 

TLR3, all TLRs signal through MyD88, whereas TLR3 and some TLR4 signal through TRIF. Although MyD88 can 

interact directly with TLRs, it has been shown that an additional protein called TIR-domain containing adaptor 
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protein (TIRAP) facilitates MyD88 interaction with TLR2 and TLR4 [46]. To associate with TRIF, TLR4 requires 

the presence of another adaptor, TRIF-related adaptor molecule (TRAM). Mice lacking MyD88 were created in 

1998 and have since been used to demonstrate the critical role of MyD88 in bacterial or parasite resistance. TLR and 

MyD88 signaling is involved in protective inflammation responses that regulate gut bacterial numbers and intestinal 

epithelial cell homeostasis [47,48]. However, the role of MyD88 in the development of colon cancer is more 

complicated. MyD88 was discovered to be a synthetic lethality target in colon cancer; it acts as a link between 

inflammatory signaling pathways from TLRs and oncogenic signaling from Ras. Inhibiting MyD88 increased the 

sensitivity of colon cancer cell lines to genotoxic agents in vitro and in vivo, reducing tumour growth and increasing 

apoptosis [49,50]. The most aggressive form of diffuse large B-cell lymphoma (DLBCL) is linked to a gain-of-

function mutation in MyD88 (L265P). This mutant form of MyD88 promotes cell survival by increasing NF-κB 

signaling and activation of signal transducer and activator of transcription 3 (STAT3) [51].  

 

Immune Escape and Survival 

TLR4 is expressed in both immune and cancer cells, and activation by either endogenous or exogenous stimuli 

results in the overexpression of a wide range of cytokines depending on the type of stimulated cells. While TLR4 

activation in immune cells results in an immune response against infectious agents, activation in tumour cells results 

in the opposite reaction, leading to immune-suppression and, eventually, tumour progression [52,53]. In fact, TLR 

overexpression in tumour cells is a mechanism by which these cells manipulate inflammatory pathways in order to 

proliferate indefinitely. TLR4 signaling may activate the p38 MAPK pathway, thereby increasing the activation of 

immunosuppressive cytokines like IL10, TGF-β, and VEGF [54]. In turn, these proteins influence immune cells and 

aid cancer cells in evading immune detection. TLR4 activation has been shown to promote the production of 

immunosuppressive cytokines TGF-β, VEGF, and pro-angiogenic chemokine IL8 by lung cancer cells, as well as 

immune escape and apoptosis resistance [55]. 

 

Therapeutic Targeting of the TLR4 Pathway 

Given the importance of the TLR4 pathway in cancer progression, it has long been assumed that inhibiting it could 

slow the growth and invasion of TLR4 positive tumours. So far, industrial efforts have concentrated on developing 

molecules that selectively and specifically inhibit receptors or inhibit their interaction with downstream adapters 

[56,57]. These efforts have resulted in the creation of versatile monoclonal antibodies, LPS analogues, small 

molecule inhibitors, and functional small interfering RNAs (siRNAs). Eritoran (E5564) is a lipid structural 

analogue. A portion of LPS was created to treat severe sepsis [58]. However, some studies have found that it has an 

inhibitory effect on cancer cells. Kuo et al. (2016) found that giving Eritoran intracolonic, intragastric, or 

intravenous could reduce tumour burden and increase apoptosis in murine models of colorectal carcinoma [59]. 

Furthermore, it was demonstrated that by altering the tumour microenvironment, this inhibitor not only reduced 

tumour volume but also decreased tumour vasculature development and pulmonary recruitment of MDSCs in lung 

cancer patients [60]. TLR4 is highly expressed in immune system cells such as monocytes (e.g., DCs and 

macrophages), lymphocytes, and splenocytes, but it is also expressed at lower levels in epithelial and endothelial 

cells, as well as cancer cells [61]. TLR4 can be activated by natural ligands other than bacterial LPS, such as 

respiratory syncytial virus fusion protein and glucuronoxylomannan. Furthermore, it has been demonstrated that 

after activation by a diverse range of endogenous molecules (DAMPS), TLR4 (and TLR2) can promote sterile 

inflammation, i.e. inflammation caused by tissue damage and injury rather than bacterial or viral infections [62]. 

These molecular danger signals, which include heat shock proteins (HSPs), extracellular matrix degradation 

products, high mobility group protein B1 (HMGB-1), β-defensin, surfactant protein A, and minimally modified 

LDL, are frequently released or exposed by dying or stressed cells and are also significantly expressed by cancer 

cells dying as a result of radiotherapy and/or chemotherapy. The association of these molecules with the TLR4 

expressed by immune cells is thought to contribute to the success of the aforementioned anticancer therapeutic 

strategies [63,64]. 
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Conclusions 

TLR4 is important in innate immunity because its activation by LPS is required for the host's defense against gram-

negative bacteria. On the other hand, its overexpression within tumour cells and the microenvironment may 

contribute to cancer progression. TLR4 is activated by a variety of endogenous and exogenous molecular, bacterial, 

and viral ligands. The potent pro-inflammatory reactions that result provide a promising platform for cancer 

immunotherapy. TLR4 has been shown to play an important role in the presentation of antigens from cancer cells 

that have succumbed to chemotherapy or radiotherapy. Furthermore, TLR4 polymorphisms may influence an 

individual's susceptibility to breast cancer development and/or recurrence. Finally, it has been demonstrated that 

targeting TLR4 in breast cancer cells reduces their metastatic potential. Chronic inflammation caused by the TLR4 

pathway contributes to tumorigenesis in a variety of cancers. In fact, activating the NFкB transcription factor and its 

versatile signaling crosstalk with other cancer promoting pathways causes immune suppression, cancer cell survival, 

metastasis, and drug resistance, at least in part.  
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