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Abstract In this paper, an attempt was made to develop a quantitative structure-activity relationship (QSAR) and 

molecular docking studies on a series of tetraketone and benzyl-benzoate Derivatives acting as protein tyrosine 

kinases (EGFR) inhibitors. QSAR was performed using the genetic algorithm-multiple linear regression (GA-MLR) 

method that comes out with a very promising result. According to Model-1 by GA-MLR anti-tyrosine activity of 

tetraketone and benzyl-benzoate derivatives were influenced by an individual (ATS0s, AATS6p, and VR1_Dze) and 

alignment independent descriptor (ATSC1i and SpMAD_Dzv) help in understanding the effect of ionization 

potential and electronegativities respectively at different position of tetraketone and benzyl-benzoate. The 

contribution plot of steric, geometric, and electrostatic field interactions generated by QSAR shows interesting 

results in terms of internal and external predictability. Finally, molecular docking analysis was carried out to better 

understand the interactions between EGFR targets and inhibitors in this series. Hydrophobic and hydrogen bond 

interactions lead to the identification of active binding sites of EGFR protein in the docked complex. The model 

proposed in this work can be employed to design new derivatives of tetraketone and benzyl-benzoate with specific 

tyrosine kinase (EGFR) inhibitory activity.    

Keywords Tyrosinase, tetraketone and benzyl benzoate, Semi-empirical (PM6), GFA-MLR, QSAR, Applicability 

Domain, Molecular Docking, Drug Design, and Discovery 

Introduction 

Tyrosinase is an enzyme that catalyzes the oxidation of phenols. It is also known as monophenol monooxygenase. It 

is a copper-containing enzyme present in animal tissues, higher plants, and fungi that catalyzes the production of 

melanin [1,2]. Production of melanin causes many kinds of skin diseases, such as hyperpigmented spots on the face 

and freckles [3]. Tyrosinase catalyzes both the hydroxylation of monophenols to o-di-phenols (monophenelase or 

cresolase activity) and the oxidation of o-di-phenols to o-quinones both using molecular oxygen followed by a series 
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of non-enzymatic steps resulting in the formation of melanin which plays a crucial protective role against skin 

photocarcinogenesis [3-5]. Tyrosinase may involve in neuromelanin formation in the human brain and contribute to 

neurodegeneration associated with Parkinson's disease [5,6]. In fungi, the role of melanin is correlated with the 

differentiation of reproductive organ and spore formation, the virulence of pathogenic fungi, and tissue protection 

after injury. Besides, it causes undesired enzymatic browning such as injured cut fruits and vegetables which leads 

to a significant decrease in nutritional values [6]. As tyrosinase inhibitors have increasing importance due to 

enormous application prospects in recent periods, the various tyrosinase inhibitors are extracted from natural sources 

and synthesized. Among which some apply to pharmaceutical and cosmetic fields [7]. Tyrosinase inhibitors are 

useful for the treatment of some dermatological disorders associated with melanin hyperpigmentation, wound 

healing, parasite encapsulation, and also important in cosmetics for whitening and depigmentation after sunburn [3]. 

Lead optimization is a vital component of the drug discovery process in which a chemical showing promise is 

modified to greatly improve its usefulness as a drug. Computational methods like quantitative structure-activity 

relationships (QSAR) can facilitate this process by elucidating the chemical characteristics that are favorable and 

unfavorable through statistical analysis of a series of chemicals [8,9]. QSAR methods derive correlations between 

the properties/descriptors of molecules and their biological activities (e.g., inhibition constants or binding affinities). 

Since the advent of Free Wilson and Hansch's analysis, numerous methods have been published in the literature for 

structure-activity relationship modeling [10]. It is a meaningful correlation (model) between a set of independent 

variables (chemical descriptors) calculated from chemical graphs, and a dependent variable such as binding affinity, 

log P, or the pKa value whose value one wishes to predict for the compound of interest [11]. Docking Studies, as the 

structures of more potential drug targets, are elucidated the opportunity for computers to perform initial binding 

studies is increasing. By computationally docking a ligand to a protein, one limits concerns about assay 

complications such as compound solubility and the need to maintain extensive physical compound libraries. The 

objective of computational docking is to determine how molecules of known structure will interact. The molecule 

may bind to the receptor and modify their function [12]. 

This paper aims to find a correlation between molecular and electronic structures of 37 investigated tyrosinase 

inhibitors (Table 1) which were found to have tyrosinase activity through inhibiting tyrosinase reductase as their 

inhibition efficiency IC50 was reported [3,5]. Molecular orbital calculations were performed looking for good 

theoretical parameters to characterize the inhibition property of inhibitors which will be helpful to gain insight into 

the mechanism of inhibition. 

 

Materials 

The materials used in this study include; DELL INSPIRON computer system (Intel Pentium), T4500 2.30GHz  

2.30GHz processor Dual-core, 3GB ram size on Microsoft windows 10 operating system, Spartan' 14 version 1.1.2, 

ChemDraw ultra version 12.0.1, PaDEL descriptor tool kit version 2.20 and Microsoft Office Excel 2013 statistical 

software, Material Studio (modeling and simulation software) version 7.0, DTC_Euclidean program version 1.0, 

PyRx-Python prescription (version 0.8) (http://pyrx.sourceforge.net/downloads). 4R3P, retrieved from RCSB and 

prepared by Discovery Studio visualizer version 16.1.01 (http://www.accelyrs.com).  

 

Methods 

The data set tetraketone and benzyl benzoate derivatives used in this study were taken from the work of [3,5] and are 

shown in Table 1. This set contains the values of the anti-tyrosinase inhibition potency compounds. The data set was 

divided into two groups, a training set consisted of 25 compounds and a test set with 12 compounds. The training 

and test sets were used for the construction of the models and to evaluate the predictive power of the generated 

models, respectively. The inhibitory activities in the logarithmic scale (pIC50 = log 1/IC50) fall in the range of -

0.314 to 2.233, with a mean value of 0.0428. The various steps are presented in a flowchart in Fig. 1.  
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Molecular Modeling and Generation of Molecular Descriptors 

The dual-core personal computer equipped with the operating system Windows ten (10) was used for making 

calculations of this work. The structure of all the compounds was drawn using the ChemDraw Ultra module of the 

program and transferred to Spartan'14 (2013) version 1.1.2 (14) module to create the three-dimensional (3D) 

structure. These structures were then subjected to energy minimization using molecular mechanics (MMFF). Energy 

minimized molecules were subjected to optimization via the parameterization method (PM6) [13,14]. These 

methods have become popular in recent years because they can reach similar precision to other methods in less time 

and less cost from the computational point of view. The geometry optimization of the lowest energy structure was 

carried out without any symmetry constraints were also transferred to PaDEL-Descriptor [15] version 2.20 and were 

subjected to re-optimization (with the MMFF94 force field). The most stable structure for each compound was 

generated and used for calculating various physicochemical parameters used for the statistical analysis. The resulted 

geometries were used for the docking study.  

 

Calculation of fragment-based descriptors 

For the generated descriptors, a pool of about 856 2D-3D descriptors was calculated using the PaDEL-Descriptor 

v2.20 software package. These descriptors include Acidic group count, ALOGP, Apol, Aromatic atoms count, 

BCUT, Chi cluster, constitutional, Eccentric connectivity index, electrotopological state, XLogP, Zagreb index, 

Moment of inertia, Zagreb index, Topological charge, Charged partial surface area, Wiener numbers, Petitjean shape 

index, RDF, WHIM, etc. All descriptors with constant values among the dataset were deleted, resulting in 316 

different descriptors (independent variables) that were used in the QSAR analysis.  

 

Selection of the training and test sets 

To compare the biological activities of the set of compounds that have a wide range of chemical structures (i.e., 

descriptors), the dataset was divided into representative training and test sets using a dissimilarity-based compound 

selection method called Kennard-Stone algorithms. The program is intended to split a source dataset into training 

and test sets for further modeling. There are many cases when splitting to training and test set is complicated 

because of poor endpoint variables range, etc. In this program, the authors implemented the Kennard-Stone 

algorithm which takes into account all available information (descriptors) to make a splitting, to get an evenly 

distributed set of data in both sets. The program is very quick, easy to use, with a well-documented manual that 

includes background information and steps to run the software. In my opinion, the program is very useful and can be 

applied for many kinds of datasets, which need to be split to develop and validate a predictive model.  

 

Optimized variable selection 

Owed to the fact that it is tedious and unreasonable to investigate all possible combinations of the descriptor pool, 

genetic function approximation and multiple linear regression, which simplify the process and reduce the time 

required to execute algorithms, were implemented [16].  

 

Docking Studies Methods 

3D structure of the enzyme tyrosinase with PDB code: 4R3P by [17]. The protein structure was obtained from the 

database online Protein Data Bank (http://www.rcsb.org/pdb/home).  

 

Preparation of protein structure 

The 3D coordinates of the crystal structure of EGFR (PDB ID: 4R3P) were downloaded from the Protein Data Bank 

(http://www.rcsb.org/pdb/home). EGFR (chains A) were selected for the docking simulations. Before docking, all 

water molecules are removed from protein file 4R3P. After removing the water molecules H‐atom was added to 

protein for correct ionization and tautomeric states of amino acid residues such as GLU, MET, ASP, THR, LEU, 

GLY, etc.  

 

http://www.rcsb.org/pdb/home
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Preparation of ligand structures 

The ligands used for the docking study were selected from the literature [3]. The bioactive compounds that are 

mainly present in the plants were considered for the study. Geometry optimizations of the ligands were performed 

using the semi-empirical (PM6) calculation method using Spartan '14 software (www.wavefun.com). The 

compounds included in the study are 2,2'-((3-aminophenyl)methylene)bis(cyclohexane-1,3-dione, 2,2'-

(phenylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione, 2,2'-((3-aminophenyl)methylene)bis(5,5-

dimethylcyclohexane-1,3-dione and 2,2'-((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione. The 

bioactive compounds considered for the study are listed in Table 1. The ligand structures were generated using the 

tool ChemDraw ultra v12.0.2 (www.cambridgesoft.com) Three-dimensional optimizations of the ligand structures 

were done and saved as 'PDB file'. 

 
Figure 1: Quantitative Structure-Activity Relationship Flow Chart 

Protein-ligand interaction using PyRx (autodock vina)  

The docking studies were conceded by PyRx (Autodock vina) tools (http://pyrx.sourceforge.net/downloads) version 

v0.8 programs. The searching grid extended above the preferred target proteins; polar hydrogen was added to the 



Edache EI et al                                                                                                    Chemistry Research Journal, 2020, 5(6):79-100 

 

         Chemistry Research Journal 

83 

 

ligand moieties. Kollman charges were assigned and atomic solvation parameters were added. Polar hydrogen 

charges of the Gasteiger-type were assigned and the non-polar hydrogen was merged with the carbons and the 

internal degrees of freedom and torsions were set. Tetraketone compounds were docked to target protein complex 

(4R3P) with the molecule considered as a rigid body and the ligand being flexible. Evaluation of the results was 

done by sorting the different complexes concerning the predicted binding energy. A cluster analysis based on root 

mean square deviation values, regarding the starting geometry, was subsequently performed and the lowest energy 

conformation of the more populated cluster was considered as the most trustable solution.  

Table 1: Structures of the dataset used for GA-MLR QSAR analysis with the corresponding observed and predicted 

class of tyrosinase inhibitors. 

Compound ID Structures of dataset Observed 

pIC50 

Predicted 

pIC50 

Residual 

ID01 

 

-0.816 -1.332 0.515 

ID02 

 

-1.425 -1.008 -0.417 

ID03 

 

-1.090 -1.200 0.110 

ID04 

 

-1.230 -1.308 0.078 

ID05 

 

-1.071 -0.776 -0.295 

ID06 

 

-0.684 -0.950 0.266 
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ID07 

 

-1.295 -1.540 0.245 

ID09 

 

-0.681 -0.839 0.158 

ID10 

 

-0.831 -1.128 0.297 

ID11 

 

-0.320 -0.013 -0.307 

ID15 

 

-0.417 -0.352 -0.065 

ID16 

 

-0.616 -0.713 0.097 

ID17 

 

-1.164 -1.315 0.151 

ID18 

 

-0.957 -0.577 -0.380 
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ID19 

 

-0.568 -0.746 0.178 

ID20 

 

-1.108 -0.918 -0.190 

ID21 

 

-1.186 -1.206 0.020 

ID22 

 

-0.819 -0.558 -0.261 

ID23 

 

-1.854 -1.913 0.059 

ID24 

 

-0.603 0.503 -1.106 

ID25 

 

-0.314 0.631 0.945 

ID26 

 

-1.127 -0.939 -0.188 
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ID27 

 

-0.504 -0.773 0.269 

ID28 

 

-1.103 -0.894 -0.209 

ID29 

 

2.233 2.136 0.097 

ID30 

 

1.909 1.807 0.102 

ID31 

 

2.000 1.822 0.178 

ID32 

 

1.580 2.163 -0.583 

ID33 

 

2.097 1.866 0.231 

ID34 

 

2.213 2.298 -0.085 

ID35 

 

1.613 1.979 -0.366 
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ID36 

 

2.205 1.948 0.257 

ID37 

 

1.940 1.864 0.075 

ID38 

 

1.699 1.967 -0.268 

ID39 

 

1.000 1.652 -0.652 

ID42 

 

1.699 1.598 0.101 

ID40 

 

1.177 
 

1.6502 
 

-0.4732 
 

 

Genetic Function Approximation 

Genetic Function Approximation (GFA) [18] is used to determine the best initialization of clusters as well as 

optimization of initial parameters. Genetic Function Approximation attempt to incorporate the ideas of natural 
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evolution [19]. In general, they start with an initial population, and then a new population is created based on the 

notion of survival of the fittest. Typically, fitness is the measure of how good this population is and can be 

calculated depending on the nature of the application, where a distance measure is the most common [20]. Then a 

process called crossover is done over the new population where substrings from selected pairs are swapped [21]. 

Multiple Linear Regression is a method used for modeling the linear relationship between dependent variable Y 

(pIC50) and independent variable X (descriptors). MLR is based on the least-squares method: the model is fitted such 

that the sum-of-squares of differences of the observed and predicted value is minimized. MLR estimates the values 

of regression coefficients (R
2
) by applying the least-squares curve fitting method. The model creates a relationship 

in the form of a straight line (linear) that best approximates all the individual data points. In regression analysis, the 

conditional mean of the dependent variable (pIC50) Y depends on (descriptors) X. MLR analysis extends this idea to 

include more than one independent variable. 

Regression equation takes the form: 

Y=B1*X1 + B2*X2 + B3*X3 + ………+ c 

where Y is dependent variable, 'B's are regression coefficients for corresponding 'X's (independent variable), 'c' is a 

regression constant or intercept [22]. 

 

QSAR Results 

All molecules in each data set were successfully optimized by Spartan 14 V1.1.2 software. The following properties 

were obtained from the optimized structures: Molecular properties, QSAR descriptors, thermodynamic properties as well 

as acidity and basicity properties. The successful optimization of the molecules implies that all the molecules used have 

geometries close to their real or test tube geometries. Thus, properties computed from these optimized molecules are 

reliable. A statistically significant 2D-QSAR model was obtained using the properly selected training set of 25 ligands. 

 

Descriptor Calculation  

The descriptors of each molecular structure were successfully computed with the aid of the PaDEL version 2.20 

descriptor tool kit. Approximately 856 descriptors ranging from 1D, 2D, and 3D were obtained from these soft 

wares.  

 

GA-MLR Derived models for pIC50 Anti-tyrosinase Compounds 

Models 1 give the best Genetic Function Approximation-Multiple Linear Regression (GA-MLR) derived QSAR 

models for pIC50 of anti-tyrosinase molecules. Based on the model with the best statistical parameters identified 

using the parameters in Table 2 as standard, Model 1 was chosen as the best model for predicting the pIC50 of anti-

tyrosinase molecules. The internal and external validation parameters of the models conform to the minimum 

standard for a robust QSAR model shown in Table 2, confirming the stability and robustness of the models.  

Genetic algorithm-multi-parameter linear regression 

𝑝𝑀𝐼𝐶50 =  1.40103(+/−1.69175)  − 0.0257(+/−0.0011) 𝐴𝑇𝑆0𝑠 − 3.73751(+/−0.98995) 𝐴𝐴𝑇𝑆6𝑝 +

0.19682(+/−0.01267) 𝐴𝑇𝑆𝐶1𝑖 + 1.17379(+/−0.10375) 𝑆𝑝𝑀𝐴𝐷_𝐷𝑧𝑣 − 0(+/−0) 𝑉𝑅1_𝐷𝑧𝑒. 

 __________________________________________________ Model 1 

Comparison of observed and predicted pIC50 of model 1 

The comparison of the predicted pIC50 of the model with their experimental values are presented in Tables 1. The 

low residual values shown in the tables confirms the high predictive power of the models.  

The plot of Experimental Versus Predicted pIC50 of model 1 

The agreement between the experimental pIC50 values of molecules used in the training and test set and the 

predicted values by the optimization models 1 presented in Fig. 2 and Fig. 3, respectively.  The high Linearity of 

these plots indicates the high predictive power of the models. 
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Residual plot of model 1 

The measure of the dispersion of residual pIC50 values from the predicted pIC50 values is presented in Fig. 4. The 

propagation of the errors on both sides of zero is an indication of the robustness of the QSAR models. 

Table 2: Statistical analysis of the QSAR models derived using GA-MLR approaches 

Parameters Values Parameters Values Parameters Values 

SEE 0.2086 Q
2
 0.9705 r

2
 0.8756 

R
2
 0.9823 PRESS 1.3774 r0

2
 0.8574 

R
2
 adjusted 0.9777 SDEP 0.2347 reverse r0

2
 0.8406 

F 210.92 rm
2
 (Loo)          0.9651 rm

2
 (test) 0.7574 

Q 4.7512 rm
2
' (Loo)         0.9671 reverse rm

2
 (test) 0.7118 

FIT 21.0889 average rm
2 
(LOO) 0.9661 average rm

2
 (test) 0.7346 

|r0
2
-r'0

2
| 0.017,<0.3 delta rm

2 
(LOO)    0.0020 delta rm

2
 (test) 0.0456 

K 0.8192, 0.85<k<1.15 rm
2
 (overall)          0.8797 RMSEP 0.5389 

[(r
2
-r0

2
)/r

2
]   0.02, < 0.1 reverse rm

2
 (overall) 0.8756 Rpred

2
 0.8323 

 k' 1.0583, 0.85<k'<1.15 average rm
2
 (overall) 0.8777 Q

2
f1 0.8323 

[(r
2
-r'0

2
)/r2]    0.04, < 0.1  delta rm

2
 (overall)    0.0041 Q

2
f2 0.8121 

 

Table 3: R, R
2
, Q

2
, and Rp

2
 values after several Y-Randomization tests 

Model R R
2
 Q

2
 

Original 0.9911 0.9823 0.9705 

Random 1 0.4627 0.2141 -0.2846 

Random 2 0.4213 0.1775 -1.0689 

Random 3 0.3681 0.1355 -0.3185 

Random 4 0.5475 0.2997 -0.2090 

Random 5 0.3707 0.1374 -0.6789 

Random 6 0.3160 0.0998 -0.4111 

Random 7 0.4059 0.1647 -0.7249 

Random 8 0.4484 0.2011 -0.4412 

Random 9 0.2769 0.0766 -0.6252 

Random 10 0.3824 0.1462 -0.5918 

Random Models Parameters 

Average r: 0.3999 

Average r
2
: 0.1652 

Average Q
2
: -0.5354 

Rp
2
: 0.8988 

 

Table 4: The linear model based on the five parameters selected by the GA-MLR method 

Descriptors name Symbol VIF MF 

Broto-Moreau autocorrelation - lag 0 / weighted by I-state ATS0s 1.5719 5.1762 

Average Broto-Moreau autocorrelation - lag 6 / weighted by 

polarizabilities 

AATS6p 1.3968 3.2661 

Centered Broto-Moreau autocorrelation - lag 1 / weighted by 

first ionization potential 

ATSC1i 1.3411 -0.7138 

Spectral mean absolute deviation from Barysz matrix / 

weighted by van der Waals volumes 

SpMAD_Dzv 1.7905 -6.8643 

Randic-like eigenvector-based index from Barysz matrix / 

weighted by Sanderson electronegativities 

VR1_Dze 1.9766 0.1357 
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Figure 2: Scatter plot of the experimental activities versus predicted activities for the QSAR model, LOO cross-

validated predictions on the full training set 

 
Figure 3: Scatter plot of the experimental activities versus predicted activities for test-set predictions 

 
Figure 4: The residual versus the experimental pIC50 by measured GA-MLR 
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Figure 5: William's plot of the generated GA-MLR model

 
Figure 6: Euclidean based applicability domain generated GA-MLR model 

 

QSAR Discussion 
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compounds in the training and test sets using model 1 were plotted against the experimental pIC50 values in Fig. 2 

and 3. A plot of the residual for the predicted values of pIC50 for both training and test sets against the experimental 

pIC50 values are shown in Fig. 4. Clearly, the model did not show any proportional and systematic error as 

suggested by Jalali-Heravi and Kyani [23], because the propagation of the residuals on both sides of zero is random. 

The real usefulness of QSAR models is not just their ability to reproduce known data verified by their fitting power 

(R2), but mainly it is their predictive application potential. The F -value is statistically significant at the 95% level 

since the calculated F value is higher as compared to the tabulated value. The positive value of quality factor (Q) for 

this QSAR's model suggests its high predictive power and lack of overfitting [24,25].  

FIT Kubinyi function define the statistical quality of activity prediction, the number of variables that enter in a 

QSAR model is compared by using the FIT Kubinyi function as shown in the equation below, a criterion closely 

related to F value was proven to be useful.  

𝐹𝐼𝑇 =  𝑅2
 
(𝑛 –  𝑘 –  1) / (𝑛 +  𝑘2) (1 –  𝑅2) 

where n is the number of compounds in the training set and k is the number of variables in the QSAR equation. The 

main feature of the F value is its sensitivity to changes in k if k is small sensitivity is high and vice versa if k is large. 

The FIT criterion has a low sensitivity towards changes in k values, as long as they are small numbers and a 

substantial increase in sensitivity for large k values [26,27]. The best model will be the one that possesses a high 

value of this function. According to the statistical values of the models reported in Table 2, with five variables since 

this showed high FIT. The observed, calculated, and predicted values of the statistically significant five parameters 

QSAR model are presented in model 1. 

The results of the statistical analysis are presented in Table 2. In the QSAR model, the initial GA analysis of the 

aligned training set was done using material studio version 7.0. This yielded a highly significant Q
2
 value of 0.9705 

(with SDEP = 0.2347 Table 2), which indicates that it is a model with high statistical significance; a Q
2
 value of 0.6 

is considered statistically significant in QSAR studies [28]. The conventional R
2
 value of 0.9823 and low standard 

error of estimate (SEE) value of 0.2086 Table 1, indicate the accuracy of the predictions of the model. High values 

of Q2 from the leave-one-out (LOO) analysis (Table 2) can be regarded as a necessary, but not a sufficient, 

condition for a model to possess significant predictive power [29]. In addition to LOO, the internal predictive ability 

of the model was further assessed by a Y-randomization performed with 25 analogs for 10 times. The average of 10 

readings was given as average Q
2
 as shown in Table 3; the Y-randomization test ensures the robustness of a QSAR 

model [30] and to assess the multiple linear regression models obtained by descriptor selection [31]. In the Y-

randomization test, the dependent variable or biological activity is randomly shuffled and a new QSAR model is 

developed keeping molecular descriptors intact. The new models are expected to have low R
2
 and Q

2
 values, which 

determine the statistical significance of the original model. Moreover, if the model development includes F-stepping, 

then it is necessary to shuffle both dependent and independent variables to indicate that the original model is not 

because of chance correlation. The low R
2
 and Q

2
LOO values of the random models shown in Table 3 and the value 

of R
2
P = 0.8988 (RP

2
 ≥0.5) indicates that there is no chance of correlation or structural dependency in the proposed 

model. Consequently, model 1 can be considered as a perfect model with both high statistical significance and 

excellent predictive ability. 

To satisfy with the robustness of the QSAR model developed using the training set, we have applied the QSAR 

model to an external data set of tetraketone and benzyl benzoate derivatives constituting the test set. As the 

experimental values of IC50 for these inhibitors are already available, this set of molecules provides an excellent data 

set for testing the prediction power of the QSAR model for new ligands. Fig. 3 represents the predicted pIC50 values 

of the test set based on the model. The overall root means square error of prediction (RMSEP) between the 

experimental and predicted pIC50 values was 0.5389 as showed in Table 2, which reveals good predictability. The 

estimated correlation coefficients between experimental and predicted pIC50 values with intercept (r0
2
) and without 

intercept (r
2
) were 0.8406 and 0.8574, respectively. The value of [(r

2
 –r0

2
)/r

2
] = 0.002, which is less than 0.1 

stipulated value [32] and thus validates the usefulness of the QSAR model for predicting the biological activity of 

the external data set. Also, the values of k and k′ were 0.8192 and 1.0583, which are within the specified ranges of 
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0.85 and 1.15 [30]. The values of R
2
pred = 0.8323 and rm

2
(test) = 0.7574 were found to be in the acceptable range 

(Table 2) [33], thereby indicating the good external predictability of the QSAR model. 

Selecting the best model, values of rm
2
(overall) for the model was determined. As shown in Table 2, this parameter 

penalized a model for large differences in experimental and predicted activity values. The parameter rm
2
(overall) 

determines whether the predicted activities are close to the observed values or not since high values of Q
2
 and 

R2pred does not necessarily mean that the predicted values are very close to the experimental ones. A model is 

considered satisfactory when rm
2
(overall) is greater than 0.5 [34]. Besides rm^2(overall), we have calculated 

rm
2
(test) and rm

2
(LOO) values. These two parameters signify the differences between the experimental and 

predicted activities of the test and training set compounds. For an ideal predictive model, the difference between 

R
2
pred and rm

2
(test) and the difference between Q

2
 and rm

2
(LOO) in Table 2 should below. A large difference 

between the values will ultimately lead to poor values of the rm
2
(overall) parameter. For this data set, the difference 

between Q
2
 and rm

2
(LOO) is quite less (0.0054), and that between R

2
pred and rm

2
(test) is also very less (0.0749). 

This indicates that the model obtained for this data set using those descriptors are quite robust and predictive. The 

rm
2
(LOO) parameter for a given model indicates the extent of deviation of the LOO predicted activity values from 

the experimental ones for the training set compound while parameter rm
2
(test) determines the extent of deviation of 

the predicted activity from the experimental activity values of test set compounds where the predicted activity is 

calculated based on the model developed using the corresponding training set. Model 1 shows acceptable values of 

rm
2
(LOO) and rm

2
(test) since they are greater than 0.5 [35]. 

The multi-collinearity between the above five descriptors were detected by calculating their variation inflation 

factors (VIF), which can be calculated as 1/1-R
2
 [36]. 

Where R is the correlation coefficient of the multiple regression between the variables in the model. If VIF equals 1, 

no inter-correlation exists for each variable; if VIF falls into the range of 1–5, the related model is acceptable; and if 

VIF is larger than 10, the related model is unstable and a recheck is necessary [28]. The corresponding VIF values of 

the seven descriptors are shown in Table 5. Based on this table, most of the variables had VIF values of less than 5, 

indicating that the obtained model has statistical significance. To examine the relative importance, as well as the 

contribution of each descriptor in the model, the value of the mean effect (MF) was calculated for each descriptor. 

This calculation was performed using the following equation. 

𝑀𝐹𝑗 =
𝐵𝑗  𝑑𝑖𝑗

𝑖=𝑛
𝑖=1

 𝐵𝑗
𝑚
𝑗  𝑑𝑖𝑗

𝑛
𝑖

 

 

Applicability Domain of the Model 

A quantitative structure-activity relationship (QSAR) model is exploited to monitor new compounds when its 

domain of application has been defined [30]. The prediction may be assumed reliable for only those compounds 

which fall into this domain [37]. Standardized residuals of the activity were computed and were plotted versus 

leverage values (h*). The value of leverage was calculated for every compound. Values are always between 0 and 1. 

A value of 0 is indicative of perfect prediction and usually is not accessible, and a value of 1 indicates very poor 

prediction. The lower the value, the higher confidence in the prediction. Warning leverage (h*) is another standard 

for an explanation of the results and is, generally, fixed at 3 (k +1)/ n, where k is the number of model parameters 

and n is the number of training and test sets [37]. Calculated leverage for training and test sets is useful for 

determining the compounds which affect the model and, in terms of the validation set, useful for assigning the 

applicability domain of the model. William's plot for the developed models in GA-MLR is shown in Figure 3. 

Response outliers are compounds that have standard residual points higher than ± 3.0 standard deviation units and a 

leverage value higher than the warning leverage, which is 0.72 for GA-MLR. As can be seen in Figure 3, all studied 

molecules in training and test sets lie with a high degree of confidence in the application domain of the developed 

models. 
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Interpretation of Descriptors  

The 2D-QSAR developed indicated that Broto-Moreau autocorrelation - lag 0 / weighted by I-state (ATSOs), 

Average Broto-Moreau autocorrelation - lag 6 / weighted by polarizabilities (AATS6p) and N Randic-like 

eigenvector-based index from Barysz matrix / weighted by Sanderson electronegativities  (VR1_Dze) has positive 

values in the mean effect (Table 8) indicate that the indicated descriptor contributes positively to the value of pIC50, 

whereas negative values of Centered Broto-Moreau autocorrelation - lag 1 / weighted by first ionization potential 

(ATSC1i), and Spectral mean absolute deviation from Barysz matrix / weighted by van der Waals volumes 

(SpMAD_Dzv) indicate that the greater the value of the descriptor the lower the value of pIC50. In other words, 

increasing the ATSC1i and SpMAD_Dzv (Table 8) will decrease pIC50, and increasing the ATS0s, AATS6p and 

VR1_Dze increase the extent of pIC50 of the tetraketone and benzyl benzoate derivatives. The mean effect reveals 

the significance of an individual descriptor presented in the regression model. 

 

Docking Results and Discussion 

In this present study, to understand the formation of Hydrophobic and hydrogen bond interactions between the 

tetraketone compounds and active sites of the crystal structure of EGFR (PDB code: 4R3P) was used to explore their 

binding mode and docking study was performed by using PyRx (autodock vina) 

(http://pyrx.sourceforge.net/downloads). Four (4) naturally occurring tetraketone compounds were retrieved from 

Table 1. The 3D structure and energy minimization was done by Spartan '14 software (www.wavefun.com). To date, 

several crystal structures of EGFR in complex with different inhibitors have been reported in the literature [38], are 

used as inhibitors for a tyrosine kinase (EGFR). In the present study, we have used the X-ray crystallography 

structure of tyrosinase (PDB code: 4R3P) in ternary complex against tetraketone compounds that are used for the 

docking study (Table 5).The detection of ligand-binding sites is often the starting point for protein function 

identification and drug discovery [39].The goal of ligand‐protein docking is to predict the predominant binding 

model(s) of a ligand with a protein of known three-dimensional structures [40].  PyRx (autodock vina) predicted the 

active site of the receptor EGFR (4R3P) with higher average precision. The active site of EGFR (4R3P) comprises 

of amino acid residues such as GLU762, MET766, ASP855, THR854, THR790, LYS745, ALA743, LEU844, 

LEU792, MET793, GLY796, VAL726, GLY719, and LEU718. As most of the amino acid residues in the active site 

are hydrophobic so they are the main contributors to the receptor and ligand-binding interaction (Table 5). 

 

Interaction between the Tetraketone Compounds and 4R3P 

To study the binding mode of tetraketone compounds in the binding site of the crystal structure of EGFR (4R3P), 

docking simulations were performed employing PyRx (autodock vina) program and docking scores were calculated 

from the docked conformations of the crystal structure of EGFR (4R3P)-inhibitor complexes. Four tetraketone 

compounds such as 2,2'-((3-aminophenyl)methylene)bis(cyclohexane-1,3-dione, 2,2'-(phenylmethylene)bis(5,5-

dimethylcyclohexane-1,3-dione, 2,2'-((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione and 2,2'-

((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione were docked into the active site of crystal 

structure of EGFR (4R3P) by using the same protocol. Docking studies yield crucial information concerning the 

orientation of the inhibitors in the binding pocket of the target protein. Several potential inhibitors have been 

identified through the docking simulation [41]. The majority of the ligand had a greater binding affinity with the 

target receptor crystal structure of EGFR (4R3P). Inhibition was measured by the binding energy of chemical 

compounds posses (kcal/mol). It was depicted that aligned binding conformations of the tetraketone compounds in 

the binding pocket of the crystal structure of EGFR (4R3P), were derived from the docking simulations (PyRx 

software). The four tetraketone compounds such as 2,2'-((3-aminophenyl)methylene)bis(cyclohexane-1,3-dione, 

2,2'-(phenylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione, 2,2'-((3-aminophenyl)methylene)bis(5,5-

dimethylcyclohexane-1,3-dione and 2,2'-((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione were 

bind into the EGFR active sites. From the results it has been clearly observed 2,2'-((3-

aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione (ID25) formed one hydrogen bond interaction with 
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EGFR. The corresponding docking energy value of ID25 (-6.7kcal/mol) with one H-bonding was shown in Fig. 9. 

The hydrogen bond was formed between GLU906 by a distance of 3.20Å. The docking energy of ID11 (-

7.0Kal/mol) was shown in Fig. 7, ID15 (-7.5Kcal/mol) interaction with EGFR was presented in Fig. 8 and the ID27 

(-7.6Kcal/mol) binding with EGFR was shown in Fig. 10. The molecular docking studies of tetraketone compounds 

into the EGFR binding site revealed a very clear preference for the binding pocket. Residues GLU762, MET766, 

ASP855, THR854, THR790, LYS745, ALA743, LEU844, LEU792, MET793, GLY796, VAL726, GLY719, and 

LEU718 are important for the catalytic mechanism of EGFR. Any ligand which can bind to GLU762, MET766, 

THR854, THR790, LYS745, ALA743, GLY796, VAL726, GLY719, and/or LEU718 and prevent the substrate from 

binding to the active site can behave as an inhibitor of tyrosinase. These two key residues are positioned at the end 

of the active site cleft. Usually binding of the substrate to EGFR occurs through a well-formed hydrophobic channel. 

So blocking the hydrophobic channel is an effective way to inhibit EGFR Pereanez et al., (2011) have reported that 

active site residues of ASP and a combination of ASP with GLY form the calcium-binding loop, which is 

responsible for coordinating the Ca2+ required during catalysis [42]. 

Table 5: Compounds of tetraketone and their molecular docking score 

Comp. Structure IC50 (µM) Docking Score 

ID11 

 

2.09 -7.0 

ID15 

 

2.61 -7.5 

ID25 

 

2.06 -6.7 

ID27 

 

3.19 -7.6 
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Figure 7: Overlay of docked potent 2,2'-((3-aminophenyl)methylene)bis(cyclohexane-1,3-dione compound (ID11) 

at the active site of 4R3P produced using the PyRx, Discovery Studio, and LigPlot+  program 

 

Figure 8: Overlay of docked potent 2,2'-(phenylmethylene)bis(5,5-dimethylcyclohexane-1,3-dione compound 

(ID15) at the active site of 4R3P produced using the PyRx, Discovery Studio, and LigPlot+ program. 
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Figure 9: Overlay of docked least potent 2,2'-((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione 

compound (ID25) at the active site of 4R3P produced using the PyRx, Discovery Studio, and LigPlot+ program 

 

Figure 10: Overlay of docked highest 2,2'-((3-aminophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione 

compound (ID27) at the active site of 4R3P produced using the PyRx, Discovery Studio, and LigPlot+ program 

Conclusion 

In the present QSAR investigation, the proposed QSAR models were statistically significant. However, Model-1 by 

genetic algorithm-multiple linear regression analysis could be considered as one in terms of excellent internal and 

external predictive abilities. According to Model-1 (GA-MLR), the anti-tyrosine activity of tetraketone and benzyl-

benzoate derivatives was influenced by an individual (ATS0s, AATS6p, and VR1_Dze) and alignment independent 

descriptor (ATSC1i and SpMAD_Dzv) help in understanding the effect of ionization potential and 

electronegativities respectively at different position of tetraketone and benzyl-benzoate. The result obtained from the 



Edache EI et al                                                                                                    Chemistry Research Journal, 2020, 5(6):79-100 
 

 

        Chemistry Research Journal 

98 

 

QSAR study suggests that the electron-withdrawing group on tetraketone and benzyl-benzoate ring enhances the 

lipophilicity of compounds and favors the EGFR inhibition. It also suggests that a long chain group of tetraketone 

and benzyl-benzoate ring favors the activity. It also suggests that bulky electron-donating groups are favorable. This 

finding supports the experimental observations, where the presence of bulky electronegative groups signifies an 

increase in activities of compounds. From the molecular docking studies, it is evident that hydrophobic groups 

substituted of the tetraketone ring possessing strong hydrophobic interactions with nonpolar active residues are 

likely to enhance EGFR kinase inhibition. The tetraketone ring plays a crucial role in producing biological activity 

by interacting with GLU 316, an important active residue for the binding affinity of the inhibitor, which correlates 

with the results obtained from the crystallographic study of EGFR. These interactions underscore the importance of 

nitrogen atoms for binding and subsequent inhibitory capacity. The model proposed in this work can be employed to 

design new derivatives of tetraketone and benzyl-benzoate derivatives with specific tyrosine kinase (EGFR) 

inhibitory activity. 

 

Recommendation 

1. These drugs like molecules may be synthesized and formulated appropriately. 

2. Their pharmacological and toxicological activities could be performed on animal models before clinical trials. 
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