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Abstract The explicit relationships for calculating and analyzing of the second-order  mixed derivatives with 

entropy are obtained for some types of thermal equation of state. The entropy in these derivatives can be either a 

function or an argument. These expressions have been established on the basis of general differential Maxwell 

relations of thermodynamics and rigorous  mathematical transformations. They may be applied to any pure 

substance and any model of equation of state. The determined formulas can be used to analyze the properties of a 

pure substance at special states of its thermodynamic surface.   
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1. Introduction 

The thermodynamic relations between second-order partial derivatives, which have been published in articles [1-3], 

do not depend on the type of pure substance and the used model of the equation of state (EOS). Their generality is 

based on the application of rigorous mathematical transformations and Maxwell thermodynamic differential 

equations. Usage these relations gives the possibility to find the values of some mixed derivatives and to establish 

the ratio of the two mixed derivatives at the critical point of a pure substance [1]. Also the obtained dependencies 

between the three thermodynamic variables [2, 3] give grounds for doubt in the correctness of the statement that the 

equation of state of a pure substance can not be obtained within the framework of a strictly thermodynamic 

approach. 

The method of determination of general analytical expressions to analyze and calculate various mixed second-order 

derivatives for thermal variables is proposed in the article [4]. The aim of this paper is to develop the above 

mentioned method to sets of independent thermodynamic variables that contain entropy.  

 

2. General differential dependencies between three thermodynamic variables 

Entropy s is the only caloric thermodynamic property of substance that is variable of Maxwell differential equation 

and of differential relations for second-order derivatives. All associated with entropy relations may be represented as 

sets B = {s, p, v}, C = {p, T, s}, and D = {v, T, s}, where symbols p, v, T denote correspondingly pressure, molar 

(specific) volume, and absolute temperature. These sets are named in accordance with the accepted notation in the 

work [3]. 
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The complete list of relationships between three thermodynamic variables which obtained by usage of the Maxwell 

thermodynamic equation is given below [3].  
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Any from the presented set contains two equivalent equations for the second-order derivatives Their equivalence is 

demonstrated by the examples published in reference [2] for the van der Waals and for the ideal gas equations of 

state.  

Analyses and calculations of any second-order derivative from equalities (1) – (6) involves the usage of EOS. All  

these equalities depend on entropy and two thermal variables. Therefore, to obtain the explicit expression for 

second-order derivatives with entropy the corresponding thermal EOS will be attached. 

Each of these set contains three mixed derivatives with entropy. In two equalities of the set, entropy is the 

independent variable, and in one of them it is considered as the function. All above mentioned derivatives are the 

objects for the next investigations. 

 

3. Mixed second-order derivatives with entropy for set D 

For this set is natural to take an thermal equation of state in the form 

).,( Tvpp                                                               (7) 

Then the desired functions for the set D are derivatives 2
s/vT, 2

v/Ts, 2
T/vs. From known EOS (7) and ideal 

gas property of a substance it is not difficult to obtain the analytical dependence for function s=s(T, v).  

The  derivative 2
s/vT may be rewritten as 
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According to the Maxwell differential equation the expression for the derivative in square brackets of the relation (8) 

is represented as 
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Substitution of equality (9) for equality (8) provides an opportunity to write the next analytical dependence for the 

derivative 2
s/vT  
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Taking into account the relations (9) and (10), the derivative 2
v/Ts can be directly obtained from the expression 

(6) according to the formula 
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The only mixed derivative 2
T/vs is unknown in the set D.  The expression for this derivative follows from the 

relation (5) transformed to the form 
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From differential equation of thermodynamics [5]   
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where cv – isochoric heat capacity, that is the function of temperature and volume. 

Substitution of equalities (11) and (13) for equality (12) gives the next analytical expression for derivative 2
T/vs 
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Dependence (7) is the most common form in practice of the equation of state. Among other forms of EOS with 

independent variables T and v, we can note the relations written as z=z(T, ρ), where z, ρ – are correspondingly 

compressibility factor and density of a substance. The example of such equation of state is virial [6] or the Benedict-

Webb-Rubin [7] EOS. By simple mathematical transformations z=p∙v/(R∙T), ρ=1/v, the function z(T,ρ) reduces to 

the expression (7). Thus, the above equations of state can be used directly to find the desired derivatives from 

formulas(10) – (12). 

A similar conclusion can be obtained by using modern fundamental equations of state [4, 8]. 

For the set D may be established analytical dependencies for considered above the second-order mixed derivatives 

by using another types of thermal equation of state. This procedure ground on the next general  mathematical 

relation between direct and inverse second-order derivatives 
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Obtaining the expressions for the quantities 2
s/vT, 2

v/Ts, 2
T/vs by usage equality (15) means that EOS 

takes the form 

).,( vpTT                                                                   (16) 

Substitutions of equality (15) for relations (10), (11), (14) and some mathematical transformations give the 

opportunity to write down 
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The equalities (17) - (19) determine second-order mixed derivatives with entropy for thermal variables of the set B. 

So, the heat capacity cv in the formula (19) is the function of variables p and v. 
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4. Mixed second-order derivatives with entropy for set C 

Natural form of a thermal equation of state for the set C is 

),,( Tpvv                                                               (20) 

and  the desired derivatives are 2
s/pT, 2

p/Ts, 2
T/ps. From known EOS (20) and ideal gas property of a 

substance it is not difficult to obtain the analytical dependence for function s=s(p, T).  

The algorithm of establishing explicit analytical expressions for the above derivatives is similar to that used for the 

set D. The expression for derivative 2
s/pT may be represented as 
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According to the Maxwell differential equation 
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Substitution of equality (22) for equality (21) leads to the next analytical expression for the derivative 2
s/pT  
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Using the relations (22), (23), and, (4) the expression for derivative 2
p/Ts  takes the form 
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The explicit expression for derivative 2
T/ps, that follows from the relation (3), can be written down as 
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From differential equation of thermodynamics [5]   
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where cp – isobaric heat capacity considered as the function of temperature and pressure. 

Substitution of equalities (24) and (26) for equality (25) gives the next analytical expression for derivative 2
T/vs 
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From the general  mathematical relation between direct and inverse second-order derivatives 
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can be obtained the next expressions for derivatives vT, 2
v/Ts, 2

T/vs. that are based on EOS (16). 

Substitutions of equality (28) for relations (23), (24), (27) and some transformations lead the next explicit 

expressions 
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5. Conclusion 

Each of the considered set C or D contains the entropy and two different thermal variables from thermodynamical 

Maxwell  differential equations. These two variables determine the form of the natural thermal EOS that will be 

used to find the dependencies of the second-order mixed derivatives with entropy. The entropy in these derivatives 

can be either a function or an argument. For thermal EOS with independent variables, temperature and volume, as 

well as temperature and pressure, explicit expressions are obtained for calculating and analyzing of the second-order  

mixed derivatives with entropy.  

But the set B can not be used to reveal any explicit dependence for a mixed second-order derivative with entropy. A 

possible explanation of this fact is that the temperature does not enter into the list of the element of this set, nor in 

the number of Maxwell differential equations.  

The total number of second-order mixed derivatives formed from the sets B, C, D, and three possible types of the 

thermal equation of state is equal to 27. The non-revealed such derivatives in this work are subjects of further 

research. 

It should be noted that any expression for the derivative with entropy does not contain a term corresponding for the 

ideal gas state of substance. Therefore, EOS with a linear dependency between temperature and pressure (for 

instance, ideal gas and van der Waals equations of state) can not be applied for testing of the obtained relationships. 

In this case, the use of mixed second-order derivatives leads to trivial results.  

The derived formulas can be used to analyze the properties of a pure substance in special state of its thermodynamic 

surface. First of all, this concerns problems related to the critical point of a pure substance. 
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