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Abstract Nanotechnology has been used in various sciences since its introduction in 1959, and its new applications 

are being found in different industries every day. The food industry is one of the industries in which nanotechnology 

has an advancing trend. Nanotechnology has been applied in different sectors of this industry, such as food safety, 

food design, and food protection. Nowadays, scientists' attention has been paid to silver nanoparticles for being used 

in food packaging and food protection with an emphasis on their antimicrobial properties. The application of 

nanotechnology in food packaging is divided into four categories: reinforced packaging, active packaging, 

intelligent packaging, and biodegradable nano-composites packaging; the use of silver nanoparticles in packaging is 

in the field of active packaging. There are many hypotheses about how silver nanoparticles apply antimicrobial 

properties, the most probable of which is the binding of silver nanoparticles to thiol groups in the enzymes of 

organisms, which leads to the inactivation of enzymes and finally damage to the cell wall. In general, silver 

nanoparticles can extend the shelf life of food by prolonging the lag phase and suppressing the growth of pathogens. 

In general, three chemicals, physical and biological methods are employed to produce nanoparticles. Recently, the 

use of biological methods or green chemistry has received much attention for the production of nanoparticles since 

there is no need for high energy consumption and advanced equipment, and also the lack of damage to the 

environment.    
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Introduction 

Nanotechnology is the science of manufacturing and developing materials and structures on the scale of a billionth 

of a meter. If a large molecule can be reduced to the scale of a nanometer, it leads to the development of particular 

chemical and physical properties specified for that nanoparticle that is considerably different from the larger 

properties of the original molecule. Despite the significant development of nanotechnology in many fields, the use 

of nanotechnology in food packaging is still in its infancy. Since an extensive range of nanomaterials with their 

functional properties can be used to enhance packaging, the future of food packaging can be attributed to this 

technology [1-5]. The first concept of nanotechnology was first introduced in 1959 by Nobel Laureate Richard 

Feynman, and the term nanotechnology was coined by Norio Taniguchi many years later in 1974. From the 

beginning, the role of nanotechnology in the packaging industry was considered to improve packaging capabilities. 
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The use of this technology in food packaging increases the quality of food, including its color, taste, texture stability, 

smell, and shelf life [6,7]. The reduction of food waste, which is one of the positive aspects of using nanotechnology 

in food packaging, is one of the main reasons for this increase. The Food and Agriculture Organization of the United 

Nations (FAO) estimated that one-third of the world's produced food is wasted in different ways. In the United 

States, the value of annually wasted food is equal to $165 billion, which is 40% of the food market's share and has 

adverse effects on the economy. This rate is equal to 50% of the produced food in the European Union [8-11]. The 

food packaging by controlling the transfer of moisture and gases as well as preventing the access of spoilage agents 

such as bacteria, fungi, and mold, play an important role in the safety and quality of food and the reduction of food 

waste [2,12]. Nanotechnology is expected to affect 25% of the food packaging market, which is currently estimated 

to be $100 billion in the next decade [13]. 

 
Figure 1: Some common applications of nanotechnology in the food industry [14] 

Packaging means manufacturing or providing a container or protector that maintains the health of the product within 

the period from harvesting, production, transportation, storage, and distribution until final consumption and 

preserves it from possible physical or chemical hazards. Also, the packaging must be light and cost-effective. The 

purpose of food packaging is to preserve the product, prevent bacterial spoilage, increase shelf life, prevent damage 

during transportation, and storage. Food packaging makes a major contribution to safety and maintaining food 

quality and can control the transfer of moisture and gases; as a result, food waste is significantly reduced [15]. 

Mostly used materials in food packaging are metal, glass, and paper. Over the past decade, the use of polymers and 

plastics has replaced other types of food packaging because of cost-effectiveness, ductility, and variety in physical 

properties and has resulted in many developments in the food industry. Nowadays, plastic polymers are the most 

commonly used materials in food packaging, which are of non-biodegradable materials and cause irrecoverable 

damage to the environment. These undecomposed plastics pose a serious threat to humans and the environment. The 

time required to decompose various types of plastic is different. This period can be in the range of 15 years up to 

never. On the other hand, another major problem with these packages is the probable permeability of gas and other 

small molecules [16,17]. 

 

Materials and Methods 

The  present  article  is  the  result  of  investigating  articles, books and  conference papers related  to  the  topic  and  

keywords  of  research  in various  databases  such  as  Google  Scholar,  Science  Direct and other related databases.  

 

Results & Discussion 

Nano-packaging and the Role of Silver Nanoparticles 

According to conducted investigations, there are four fields in the application of nanotechnology in food packaging: 

reinforced packaging, active packaging, intelligent packaging, and biodegradable nano-composites packaging [13]. 

The active packaging and intelligent packaging are often considered as one case. In the definition of intelligent 
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packaging, it can be said that this packaging contains an internal or external identifier that informs the consumer 

about the storage conditions of the package and the quality of the food inside the package [18]. Intelligent packaging 

can also be considered as an advanced type of active packaging that provides the consumer with information about 

the quality of the product during the period of storage and distribution to the consumer while controlling the 

packaging conditions [19,20]. However, active packaging is a type of packaging that detects adverse alterations in 

the internal environment of the system and modifies until reaching the optimal conditions [19,20]. In contrast with 

traditional packaging that focuses on protection systems, active packaging refers to a system that leads to the direct 

release of antimicrobial substances on the food surface. It is also possible that antimicrobial agents to be released in 

the form of steam in the upper space of the package. Despite the higher efficiency of direct release of antimicrobial 

substances, in cases that direct release of antimicrobial substances on food surface is required, laboratory studies and 

further studies are needed before commercialization and market entry. Accordingly, edible films prevent the activity 

of pathogenic bacteria and spoilage of the product by developing an effective aggregation of antimicrobial 

substances on the surface of the food [21,22]. A large part of nanotechnology that used to reduce the wastes of food 

packaging is based on nanocomposite. Nanocomposites made from a combination of nanomaterials in plastic 

polymers have high flexibility and are resistant against temperature, moisture, and gas permeability. The use of 

nanocomposites can increase the application of edible and biodegradable films and the coating [23-25]. The high 

antimicrobial properties and low toxicity of free silver ions for mammalian cells have increased the application of 

this ion in active and intelligent nano-packaging [26]. The antimicrobial material used in active packaging should 

not have an adverse effect on the sensory properties of food. On the other hand, the release rate of antimicrobial 

material should be controlled since the over-release of antimicrobial material damages the food [27,28]. Silver can 

kill gram-positive and gram-negative bacteria and even viruses such as HIV with a much higher effect compared to 

disinfectants. The researches have indicated that silver can kill 650 types of germs without leaving any side effects, 

which is contrary to disinfectants that leave many side effects. The mentioned capability has led to the expansion of 

the use of silver in related industries [29,30]. 

 

Investigating the Antimicrobial Properties of Silver Nanoparticles 

Since ancient civilizations, silver was used to cover the dishes to prevent contamination by germs. Silver was later 

found to be the most effective antibacterial agent with minimum toxicity for living cells [31]. In World War I, silver 

was used to prevent the growth of microbes in soldiers' wounds. Silver is currently used in various medical fields as 

a suitable barrier to prevent the growth of microbes [32]. Although the antimicrobial properties of silver have been 

used for centuries, its mechanism is unclear. 

 
Figure 2: Different mechanisms of nanoparticles in the development of antimicrobial properties [6] 
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Deactivating the enzyme function in microorganisms is considered to be the most probable hypothesis for the 

antimicrobial function of silver ions. In this process, silver atoms deactivate the enzyme by binding to thiol groups 

in the enzyme. Thiols (-SH) are organic compounds similar to alcohols in which sulfur reacts with hydrocarbons 

instead of oxygen [33]. Throughout this process, silver replaces hydrogen in thiol groups, and an S-silver bond is 

formed in the cell membrane of enzymes. The formation of this bond eventually leads to the elimination of 

microorganisms [34]. 

 
Figure 3: The reaction of silver nanoparticles with thiol groups [35] 

 

The compounds containing thiol groups such as the amino acids with (SH) in their structure, such as cysteine, 

neutralize the antibacterial activity of silver. The amino acids with disulfide bonds and sulfur-containing compounds 

cannot neutralize the activity of silver ion [36]. The antimicrobial activity of silver appears to be on the basis of 

developing the structural and functional defects in bacterial cells. Silver ions have the capability of altering the 

permeability of a cell wall through binding to the cell wall, leading to the elimination of that. The binding of silver 

ions to cell membranes, DNA, bacterial proteins, and ribosomes are of other methods in which silver ions can apply 

their antimicrobial effect [37]. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4: TEM images of a Pseudomonas aeruginosa sample at different magnifications are shown. (a) The control 

sample, i.e., no silver nanoparticles were used; (b) and (c) samples that were previously treated with silver 

nanoparticles [38] 
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The effect of silver nanocomposites is positive on an extensive range of pathogenic microorganisms, such as 

Escherichia coli [39-42], Staphylococcus aureus [43,44], Vibrio cholerae [45], and Pseudomonas aeruginosa [46]. In 

general, particles smaller than 10 nm are toxic for bacteria, including Escherichia coli and Pseudomonas aeruginosa 

[38]. High chemical reactivity and bioavailability increase the possibility of being toxicity in nanomaterials so that a 

similar volume of a substance in the nanoscale has a higher potential of toxicity compared to the larger scale of 

particles [14,47]. Silver nanoparticles have higher contact and significantly affect the microorganisms when they are 

separated. Over time, the interconnection of these particles is possible, which leads to the reduction of their 

effectiveness. According to previous research, silver nanoparticles with the size of 1-10 nanometers have the highest 

antimicrobial effect if they are separated and possess an excellent contact surface. It should be pointed out that silver 

particles can kill useful bacteria in food (fermented and probiotic foods) and in the human body; however, they 

usually do not have any effect on human cells at concentrations between 21 to 26 micrograms per liter [48-51]. 

Following EU rules, the allowed amount of silver ions in food is equal to 0.05 mg Ag/Kg [51]. The overall objective 

of active antimicrobial packaging is to prolong the lag phase and suppress the growth of microorganisms to increase 

the shelf life of food [52]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: HAADF STEM images that show the interaction of the bacteria with the silver nanoparticles: (a) 

Escherichia coli, (b) Salmonella typhi, (c) Pseudomonas aeruginosa, and (d) Vibrio cholerae. [38] 

a b 

c d 
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In general, antimicrobial packaging can be divided into two general categories; in the first type, the antimicrobial 

agent exerts its effect by transmitting onto the surface of the food, while in the second type, the antimicrobial agent 

is not transmitted toward the food [53,54]. The antimicrobial function can be used in different ways in active food 

packaging. The direct mixture of volatile and non-volatile antimicrobial agents in polymers, adsorbing or coating of 

antimicrobial materials on polymer surfaces, immobilization of antimicrobial compounds in polymers by ionic or 

covalent bonds, the addition of sachets containing antimicrobial compounds in packaging, and the use of 

antimicrobial films are among these methods [55]. 

 

 
 

Figure 6: Different types of active food contact materials [35] 

 

Other natural and synthetic antimicrobial compounds have previously been employed to protect food products from 

pathogens. The antimicrobial compounds such as sorbates, benzoates, propionates, and parabens can be used as food 

preservatives. In previous studies, sodium benzoate and potassium sorbate have been employed in chitosan film 

[56,57]. The bacteriocins are synthesized ribosomal bioactive peptide compounds in the form of a peptide complex 

or released on the extracellular surface that have a bacteriostatic effect on other species. The use of bacteriocins as 

biological preservatives has been started since about more than two decades ago. The molecular weight of these 

protein metabolites is usually less than 10 kDa. Nicin, lacticins, pediocin, diolococcin, enterocins, and propionicins 

are of these bacteriocins. It has been indicated in many studies that while Nisin affects Gram-positive organisms, it 

does not affect Gram-negative bacteria. This issue can be solved by adding food-grade Chelating agents such as 

EDTA (Ethylenediaminetetraacetic acid) and Citric acid [58,59]. Chitosan (C6H11NO4) is a substance with 

antimicrobial properties that is suitable for manufacturing film or coating and can act as a carrier for other additives 

[60-63]. Many studies have reported an increase in antimicrobial activity of chemical and natural antimicrobial 

agents as a result of mixing with silver nanoparticles. These mixed compounds can be suitable options for use in 

active packaging [64-67]. 

 

Different Methods of Synthesizing Silver Nanoparticles 

The methods for producing silver nanoparticles are divided into three general categories: chemical, physical, and 

biological [68]. In the physical approach, physical energy is used to produce nanoparticles. Although this approach 

is the most appropriate method to produce silver nanoparticles in the form of powder and can be used to produce 

large volumes of nanoparticles in a single process, the cost of initial investment to purchase equipment must be 
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considered [69]. In general, evaporation condensation is used to produce metal nanoparticles in the physical 

approach. Furthermore, silver nanoparticles are also obtained by laser ablation of metallic bulk materials in solution 

[70,71]. The chemical reduction method for producing nanoparticles is the most common method due to its ease and 

need for simple equipment. The size of the resulting nanoparticles is one of the most important factors that affect the 

selection of the proper method for synthesizing the nanoparticle. Companies and individuals tend to produce metal 

nanoparticles with controlled size. 

 
Figure 7: Generic methods for producing nanoparticles [72] 

 

The general methods for producing nanoparticles are shown in Fig.7, in which the section indicates the production 

of pre-formed nanoparticles in the gas phase. All methods of producing gas-phase nanoparticles include the 

production of super-saturated metal vapor. These vapors condense into particles. This method, which is a physical 

approach, is referred to as the most flexible synthesis method. In this method, a tube furnace is often employed to 

evaporate at atmospheric pressure so that the source of the material is placed in the center of the furnace, and 

evaporation is done [69,72]. The excessive occupancy of space, high energy consumption, and a long time to 

achieve stable heat are the disadvantages of using a tube furnace [69]. As shown in section b of Fig.7, in another 

approach, nanoparticles are obtained by deposition of atomic vapor on surfaces. Optimizing the coverage, substrate 

temperature, and deposition rate are some of the ways to control the size of particles in this method [72]. Section c 

of Fig.7 indicates the wet chemical method. There are several methods to reduce metal salts and obtain nanoparticles 

as a suspension in the solvent. By placing a drop of this suspension on a surface under controlled evaporation 

conditions, the suspension can be condensed as a regular flat monolayer on a surface [72]. These three methods are 
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known as bottom-up approaches, i.e., the nanoparticles are synthesized from atoms. Section d of Fig.7 shows top-

down approaches. The top-down method separates nanoparticles from larger structures by employing the two main 

methods of electron beam lithography (EBL) and focused ion beam milling (FIB milling). Both of these methods 

have some limitations compared to bottom-up approaches so that they are unable to produce particles as small as the 

size of particles produced by bottom-up approaches. However, EBL and FIB milling are more flexible in terms of 

the morphology of nanoparticle and can produce particles of various morphologies [72]. 

 

 
Figure 8: Top-down and Bottom-up approaches [73] 

 

Recently, the use of naturally reducing agents such as polysaccharides and biological microorganisms (bacteria, 

fungus, and plant extracts) or green chemistry has received more attention in biosynthetic methods [69,74]. The 

development of biological processes for the synthesis of nanoparticles is evolving and has become an important 

branch of nanotechnology [75]. The biological production systems have received special attention because of their 

effectiveness and flexibility. The microbial cells are highly organized units that are capable of synthesizing 

renewable particles of specified size and structure due to their morphology and metabolic pathways. The 

biosynthetic nanoparticles often have water-soluble and biocompatible properties, which are appropriate for many 

applications and even necessary for some of them [76]. The high pressure, energy, temperature, and toxic chemicals 

are among other advantages of nanoparticle biosynthesis [77]. Table 1 lists some species of microorganisms that 

synthesize silver nanoparticles. 

 

 

Table 1:Some species of microorganisms producing silver nanoparticles in different sizes 

S. No Organism Size (nm) Reference 
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Bacteria 

1 Pseudomonas stutzeri AG259 200 [78] 

2 Lactobacillus Strains 500 [79] 

3 Bacillus megaterium 46.9 [80] 

4 Klebsiella pneumonia (culture supernatant) 50 [81] 

5 Bacillus licheniformis 50 [82] 

6 Bacillus licheniformis (culture supernatant) 50 [83] 

7 Corynebacterium sp. 10–15 [84] 

8 Bacillus subtilis (culture supernatant) 5–60 [85] 

9 Geobacter sulfurreducens 200 [86] 

10 Morganella sp. 20 ± 5 [87] 

11 Bacillus subtilis 5–60 [85] 

12 Escherichia coli 1–100 [88،89]  
13 Proteus mirabilis 10–20 [90] 

14 Bacillus sp. 5–15 [91] 

15 Bacillus cereus 4 & 5 [92] 

16 Staphylococcus aureus 1–100 [93] 

17 Lactic acid bacteria 11.2 [94] 

18 Brevibacterium casei 50 [95] 

19 Plectonema boryanum 1-200 [96] 

20 Enterobacter cloacae 50-100 [97] 

Fungi 

 1 Fusarium oxysporum 5–50 [98] 

2 Aspergillus fumigatus 5–25 [99] 

3 Aspergillus niger 20 [100] 

4 Phanerochaete chrysosporium 100 [101] 

5 Aspergillus flavus 8.92 ± 1.61 [102] 

6 Cladosporium cladosporioides 10–100 [103] 

7 Fusarium semitectum 10–60 [104] 

8 Trichoderma asperellum 13–18 [105،106]  

9 Cladosporium cladosporioides 10–100 [103] 

10 Trichoderma viride 5–40 [107] 

11 Penicillium fellutanum 1–100 [108] 

12 Penicillium brevicompactum WA 2315 23–105 [109] 

13 Verticillium sp. 25 ± 12 [110] 

14 Fusarium solani 5–35 [111] 

15 Fusarium acuminatum 5–40 [112] 

16 Aspergillus clavatus 10–25 [113] 

17 Phoma sp. 3.2883 70 [114] 

18 Coriolus versicolor 350-600 [115] 

Plants 

1 Azadirachta indica 50 [116] 

2 Cinnamomum camphora leaf 55–80 [117] 

3 Glycine max (soybean) leaf extract 25–100 [118] 

4 Jatropha curcas 10–20 [119] 

5 Cinnamomum camphora Leaf 5–40 [120] 

6 Phyllanthus amarus 18–38 [121] 

7 Carica papaya 60–80 [122] 

8 Gliricidia sepium 10–50 [123] 

9 Coriandrum sativum leaf extract 26 [124] 

10 Camellia sinensis 200 [125] 

11 Medicago sativa 2-20 [126] 

12 Aloe vera 15-20 [127] 

13 Cinnamomum zeylanicum bark 50-100 [128] 

14 Desmodium triflorum 5-20 [129] 

15 Piper betle leaf 3-37 [130] 
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Conclusion 

The use of this technology in food packaging is expanding every day with the introduction of various properties such 

as antimicrobial properties, heat and light resistance, and enhancing gas and heat resistance for packaging by 

nanoparticles. Therefore, further experiments are required to investigate the effect of these particles on human cells 

and the migration of nanoparticles to food. The migration of nanoparticles from packages to beverages or food is 

commonly cited as the major concern. Many investigations reveal that the smaller the nanoparticles and the lower the 

density, the higher the probability of these particles being transferred to food and causing health problems for the 

consumer. 
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