Available online <u>www.chemrj.org</u>

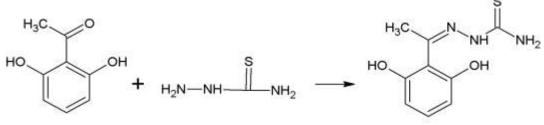
Research Article

ISSN: 2455-8990 CODEN(USA): CRJHA5

Potentiometric Study of Ni(II)-Thiosemicarbazone Systems in Micellar Medium

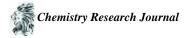
S.N. Jatolia, S.K. Verma, H.S. Bhandari & Uma Rathore*

GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC Grade -A), Bikaner MGS University, Bikaner-334 001. Corresponding Author: uma.rathore111@gmail.com


Abstract Ligand 2,6-Dihydroxyacetophenonethiosemicarbazone [2, 6 DHAT] has been synthesized. The present work describes the synthesis, characterization, solution, and biological investigations on Ni (II)-thiosemicarbazone complexes. Solution studies on the complexes have also been carried out in different micellar [HTAB, SDS, TX-100] systems at 25°C and data have been compared with ethanol water mixture. Stability constants and molar ions in 60% ethanol were determined. Proton ligand stability constant and metal-ligand stability have been determined potentiometrically.

Keywords Thiosemicarbazone, stability constant, micellar

1. Introduction


Thiosemicarbazones have been the subject of studies not only for coordination chemistry reasons, but for pharmacological as well, due to their good complexing properties and significant biological activity [1]. Thiosemicarbazones have attracted a crescent interest in recent years due to their biological properties, such as antiviral, antibacterial, anti-malarial, antifungal and antitumoral activities [2]. The research on coordination chemistry and analytical applications of thiosemicarbazones and its metallic derivatives has increased considerably [3].

In this paper we are reporting the synthesis and stability constant of Ni (II) complexes with thiosemicarbazide based ligand: 2,6-Dihydroxyacetophenonethiosemicarbazone [2, 6-DHAT].

2, 6-Dihydroxyacetophenone

Thiosemicarbazide 2,6-Dihydroxyacetophenonethiosemicarbazone Synthesis of ligands

Materials

All the chemicals used were of AR grade and procured from Himedia. Metal salt were purchased from E. Merck and were used as received. All solvent used were of standard/spectroscopic grade. Ligand 2, 6-DHAT was synthesized by condensation reaction of thiosemicarbazide with acetophenone in presence of methanol according to the literature [4].

Metal-ligand complexes were formed by potentiometrically.

All biological activities have been carried out by disc diffusion method under horizontal laminar.

Metal ligand complexes were formed by potentiometric titrations. Ligands and metal complexes were analyzed by TLC method.

Procedure

Potentiometric titration:

pH metric studies has been done with the help of pH meter (pH meter 802). The pH meter was switched on half an hour before begin the titrations. Instrument was calibrated with aqueous standard buffer solution of pH 4.0, 7.0, 9.0 prepared from buffer tablets. The experiment procedure involved the titration of

Solution (i): 1.00 ml HNO₃ (0.004 M) + 5 ml KNO₃ (0.1 M)

Solution (ii): Solution (i) + 1.25 ml of ligand (0.0005M) and

Solution (iii): Solution (ii) + 0.625 ml of NiCl₂. nH₂O (0.00025 M)

Volume of all these reaction mixtures was made up to 25 ml using 60% ethanol. For the titration in micellar system, 1.20 ml (5 mmol) of TX-100, 2.25 ml (5 mmol) of SDS and 2.0 ml of HTAB (5 mmol) were added separately in each set of the above reaction mixtures before making up the volume. The reaction mixtures of ethanol and water – ethanol (1:1) solutions were also prepare. The reaction mixtures were titrated individually against standard 0.05 M KOH.

After each addition of a certain amount of alkali to the the reaction mixture the change in the pH of the solution is measured. The graphs were plotted against values of pH and volume of alkali added. Using Irving and Rossotti stability constants of the metal ligand complexes were calculated from the titration curves.

Result and Discussion

Potentiometric titration:

Proton-ligand stability constants (pK)

The proton-ligand formation curves were estimated by plotting graphs between the values (\overline{n}_A) Vs pH readings.

The pK values were obtained from formation curve by noting the pH at which $(\overline{n}_A) = 0.5$ and $(\overline{n}_A) = 1.5$. The

proton-ligand formation number (\overline{n}_A) were calculated by Irving and Rossotti expression [5]. The result indicated that the ligand was mono dissociable.

$$\bar{n}_{A} = \gamma_{-} \frac{(V_{L} - V_{a})(N + E^{b})}{(V_{b} + V_{a})T_{L}}$$
(1)

Where, V^0 = Initial volume of solution (25 ml), E^0 = Initial concentration of free acid (HNO₃), Y= Number of dissociable protons from ligand, T_L is concerntration of ligand in solution, (V_L-V_a) = Volume of alkali (KOH) consumed by acid and ligand on the same pH [6].

Metal ligand stability constant (logK):

The average number of metal ions associated with the ligand (\overline{n}) at different pH values was estimated from the curve plotted between n- and pH. Metal ligand stability constant (logK) were obtained by the half integral method by plotting graph between (\overline{n}) vs. pL.

$$\bar{n} = \frac{(V_M - V_L)(N + E^0)}{(V_0 + V_L)n_A^T T_m}$$

(2)

(3)

$$pL = \log_{10} \left[\frac{\sum_{n=0}^{n=1} \beta_a^H(anolog_{pH})}{T_L - n^- T_M}, \frac{V_0 + V_M}{V_0} \right]$$

Where N, E^0 , V^0 and V_L have same significance as in equation (1), V_M is the volume of KOH added in the metal ions titration to attain the given pH reading and T_M total concentration of metal present in solution. log K₁ and logK₂ were calculated from the formation curve by the known value of pL at which (\overline{n}) =0.5 and (\overline{n}) =1.5 corresponding to the values of logK₁ and logK₂, respectively. The value of logK₁ and logK₂ also determine in different miceller systems [7 -11].

Sr. No.	Alcohol		Sr. No.		Alcohol	
	pН	$\overline{n}_{\mathrm{A}}$		pН	$\overline{n}_{ m A}$	
1	4.4	1.0647974	1	4.4	1.095021	
2	4.65	1.0604655	2	4.65	1.056102	
3	4.9	1.0388613	3	4.9	1.099281	
4	5.15	1.0129507	4	5.15	1.090633	
5	5.4	1.0172662	5	5.4	1.077667	
6	5.65	1.0129486	6	5.65	1.07334	
7	5.9	1.0086317	7	5.9	1.064699	
8	6.15	1.0086314	8	6.15	1.069007	
9	6.4	1.0043153	9	6.4	1.073314	
10	6.65	1.0086303	10	6.65	1.073311	
11	6.9	1.00863	11	6.9	1.068993	
12	7.15	1.0043146	12	7.15	1.068988	
13	7.4	1.0043145	13	7.4	1.068985	
14	7.65	1.0086286	14	7.65	1.064668	
15	7.9	1.0043138	15	7.9	1.064663	
16	8.15	1.0043136	16	8.15	1.06466	
17	8.4	1.0043134	17	8.4	1.060345	
18	8.65	1.0043131	18	8.65	1.060342	
19	8.9	1.0043126	19	8.9	1.060338	
20	9.15	1.0129357	20	9.15	1.060333	
21	9.4	1.0129341	21	9.4	1.056019	
22	9.65	1.0129326	22	9.65	1.047395	
23	9.9	1.0129305	23	9.9	1.051701	
24	10.15	1.0301676	24	10.15	1.043078	
25	10.4	1.034469	25	10.4	1.064611	
26	10.65	1.0473816	26	10.65	1.090449	
27	10.9	1.0602919	27	10.9	1.129197	
28	11.15	1.0387282	28	11.15	1.180847	
29	11.4	0.9785211	29	11.4	1.197999	
			30	11.65	1.344223	
			31	11.9	1.399889	
			32	12.15	1.502505	

Table 1: The \overline{n}_A and pH values of Ligand 2,6 DHAT in Alc. + water and Alcohol

Sr. No.		HTAB	Sr.	No -		SDS		Sr. No.		TX-100
51. 140.	pН	$\overline{n}_{\mathrm{A}}$	51.	110.	pН	\overline{n}_{A}		51.140.	pН	\overline{n}_{A}
1	pН	$\overline{n}_{\mathrm{A}}$	1		4.4	1.09	50362	1	4.15	1.1856857
2	4.4	1.1814037	2		4.65	1.09	50096	2	4.4	1.1553708
3	4.65	1.1683722	3		4.9	1.09	93004	3	4.65	1.1466981
4	4.9	1.1640157	4		5.15	1.07	33696	4	4.9	1.1294033
5	5.15	1.1510369	5		5.4	1.02	15681	5	5.15	1.1423266
5	5.4	1.1380633	6		5.65	1.01	29393	6	5.4	1.1380026
7	5.65	1.1250949	7		5.9	1.01	7251	7	5.65	1.1423039
8	5.9	1.120762	8		6.15	1.01	7251	8	5.9	1.1466044
9	6.15	1.1207523	9		6.4	1.01	72496	9	6.15	1.155222
10	6.4	1.1250599	10		6.65	1.02	15621	10	6.4	1.1552096
11	6.65	1.1250499	11		6.9	1.02	15603	11	6.65	1.1595082
12	6.9	1.1293568	12		7.15	1.03	01845	12	6.9	1.1638127
13	7.15	1.1336634	13		7.4	1.02	15586	13	7.15	1.1637931
14	7.4	1.1250249	14		7.65	1.03	01821	14	7.4	1.16378
15	7.65	1.129331	15		7.9	1.03	44924	15	7.65	1.1723932
16	7.9	1.1293207	16		8.15	1.03	4491	16	7.9	1.1766889
17	8.15	1.133626	17		8.4	1.03	88008	17	8.15	1.1766748
18	8.4	1.1336154	18		8.65	1.03	87977	18	8.4	1.1852857
19	8.65	1.1292949	19		8.9	1.04	74195	19	8.65	1.1852635
20	8.9	1.1292845	20		9.15	1.05	17283	20	8.9	1.1852487
21	9.15	1.1292742	21		9.4	1.05	60367	21	9.15	1.1938572
22	9.4	1.1249501	22		9.65	1.05	60322	22	9.4	1.1981493
23	9.65	1.1249402	23		9.9	1.06	89628	23	9.65	1.2196698
24	9.9	1.1206223	24		10.15	1.06	89573	24	9.9	1.2584144
25	10.15	1.1162958	25		10.4	1.07	75769	25	10.15	1.3272988
26	10.4	1.137832	26		10.65	1.06	03208	26	10.4	1.4177033
27	10.65	1.146429	27		10.9		02991	27	10.65	1.8866571
28	10.9	1.1593429	28		11.15	1.07	31999			
29	11.15	1.1593111	29		11.4	1.14	2043			
30	11.4	1.249711	30		11.65		46163			
31	11.65	1.3614919								
Table 3:		And pL va	lues	of Li	gand 2.	6 DH	AT wit	h Ni (II) i	n Alc.+	water
		<u>r</u> Sr. N		pН	pl		n			
		1		4.4	4.317		0.048			
		2		4.65	4.075		0.065			
		3		4.9	3.849		0.116			
		4		5.15	3.624		0.170			
		5		5.4	3.382		0.186			
		6		5.65	3.149		0.221			
		7		5.9	2.917		0.256			
		8		6.15	2.680		0.282			
		9		6.4	2.457		0.335			
		10		6.65	2.229		0.376			
		11		6.9	2.002		0.419			
		11		7.15	1.763		0.438			
		13		7.4	1.518		0.446			
		14		7.65	1.272		0.453			
		15		7.9	1.028		0.463			
		16		8.15	0.787		0.481			
		17		8.4	0.542		0.489			
		17		8.65	0.342		0.489			
		10	,	0.05	0.505	0057	0.50	070		

Table 2: The \overline{n}_A and pH values of Ligand 2,6 DHAT in HTAB, SDS and TX-100 medium

Sr. No.	pН	pL	\overline{n}
1	4.4	4.6317035	0.5127643
2	4.65	4.4277109	0.5884222
3	4.9	4.2130719	0.6439791
4	5.15	4.0083186	0.7122966
5	5.4	3.7751166	0.7367094
6	5.65	3.5216264	0.7315221
7	5.9	3.2701133	0.7292096
8	6.15	3.0071669	0.7100751
9	6.4	2.7445155	0.6910971
10	6.65	2.494533	0.6910714
11	6.9	2.2518008	0.701875
12	7.15	2.0018349	0.7018225
13	7.4	1.7518519	0.7017963
14	7.65	1.5037544	0.7045855
15	7.9	1.2537881	0.7045327
16	8.15	1.0038051	0.7045063
17	8.4	0.7612408	0.7154472
18	8.65	0.5168062	0.72355

Table 4: The \overline{n} And pL values of Ligand 2,6 DHAT with Ni (II) in Alcohol

Table 5: The \overline{n} And pL values of Ligand 2,6 DHAT with Ni (II) in HTAB

Sr. No.	pН	pL	\overline{n}
1	4.4	4.3838283	0.2475556
2	4.65	4.1364091	0.2523364
3	4.9	3.9036165	0.2860717
4	5.15	3.6811452	0.3390768
5	5.4	3.445646	0.3661844
6	5.65	3.2106207	0.3937265
7	5.9	2.9760698	0.4217296
8	6.15	2.7456823	0.4566596
9	6.4	2.4973005	0.4592255
10	6.65	2.2661777	0.49199
11	6.9	2.0245945	0.5062947
12	7.15	1.7878444	0.5286145
13	7.4	1.5551936	0.5574828
14	7.65	1.3188355	0.5796795
15	7.9	1.0789897	0.5959634
16	8.15	0.8480056	0.6260398
17	8.4	0.6137049	0.650382
18	8.65	0.3850631	0.6828497

Sr. No.	pН	pL	\overline{n}
1	4.4	4.3799495	0.1814662
2	4.65	4.1416504	0.2050833
3	4.9	3.8876871	0.1963708
4	5.15	3.6518748	0.2251675
5	5.4	3.4286781	0.2786879
6	5.65	3.1974183	0.3150923
7	5.9	2.964608	0.3476486
8	6.15	2.7373584	0.3900448
9	6.4	2.5107617	0.432407
10	6.65	2.2740215	0.4559099
11	6.9	2.0336896	0.4727585
12	7.15	1.7863074	0.4771723
13	7.4	1.5582528	0.5149289
14	7.65	1.3107344	0.5189893
15	7.9	1.0743974	0.541813
16	8.15	0.8446482	0.5751331
17	8.4	0.603481	0.5893248
18	8.65	0.3690934	0.6141787
	8.9	0.2202647	0.7655196

Table 6: The \overline{n} And pL values of Ligand 2,6 DHAT with Ni (II) in SDS

Table 7: The	\overline{n}	And pL values of Ligand 2,6 DHAT with Ni (II) in TX-100

1		0	•
Sr. No.	pН	pL	\overline{n}
1	4.15	4.413658	0.28734
2	4.4	4.137231	0.234151
3	4.65	3.902025	0.263626
4	4.9	3.653779	0.266852
5	5.15	3.408091	0.275159
6	5.4	3.153406	0.265693
7	5.65	2.90295	0.264574
8	5.9	2.648356	0.255232
9	6.15	2.402023	0.262375
10	6.4	2.156225	0.270553
11	6.65	1.910989	0.279878
12	6.9	1.677944	0.312793
13	7.15	1.450388	0.355372
14	7.4	1.22812	0.406608
15	7.65	1.005926	0.456379
16	7.9	0.770199	0.481235
17	8.15	0.540794	0.516527
18	8.4	0.309358	0.54755
19	8.65	0.124914	0.652442

Conclusion

The values of log K are greater than zero, which exhibits the formation of metal ligand complexes by potentiometrically.

References

- Jesic, L. S. V., Leovac V. M., Lalovic, M. M., Cesljevic, V. I., Divjakovic, V., 2011. Transition metal complexes with thiosemicarbazide-based ligands. Part 58. Synthesis, spectral and structural characterization of dioxovanadium (V) complexes with salicylaldehyde thiosemicarbazone. Journal of Serbian Chemical Society, 76 (6): 865–877.
- [2]. DeSousa, G., F., Deflon, V.M., Niquet, E., 2004. Diorganotin(IV) complexes with acetone N(4)-phenylthiosemicarbazone (Haptsc) as ligand. The crystallographic structures of [Sn(CH3)2(aptsc)X] (X ¹/₄ Cl and Br) Journal of Molecular Structure. 687: 17–21.
- [3]. Casas, J.S., Garci-Tasend, M.S., Sordo, J., 2000. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coordination Chemistry Reviews, 209 (1): 197-261.
- [4]. Lobana, T. S., Sanchez, A., Casas, J. S., 1997. Synthesis, characterization, and in vitro cytotoxic activities of benzaldehyde thiosemicarbazone derivatives and their palladium (II) and platinum (II) complexes against various human tumor cell lines. Journal of the Chemical Society, 22: 4289-4300.
- [5]. Irving, H. M., Rosstti, H. S., 1954. The calculation of formation curves in mixed solvents. Journal of Chemical Society, 2904-2910.
- [6]. Pund, D. A., Bhagwatkar, R. A., Tavade, D. T., Rathod, D. B., 2010. Studies on interaction between La (ii), and Nd (iii) metal ions and 1-(4-Hydroxy-6-methyl pyrimidino)-3-substituted thicarbamide at 0.1 m ionic strength pH metrically. Rasayan Journal of Chemistry, 2: 246-249.
- [7]. D. M. Janrao Pathan, D. D. Kayande, J. J. Mulla, 2014. An over view of potentiometric determination of stability constants of metal complexes. Scientific Reviews and Chemical Communication, 4: 11-24.
- [8]. Rathore U., Gupta R., Soni M., Bhojak N., 2016. Conductometric And pH Metric Investigations On Thiosemicarbazone Co(II) Systems. International Journal of New Technologies in Science and Engineering, 3(3).
- [9]. Rathore U., Gupta R., Joshi G. and Bhojak N., 2016. Conductometric and pH Metric Investigations on Thio Conductometric and pH Metric Investigations on Thio Conductometric and pH Metric Investigations on Thiosemicarbazone-Mn (ii) system. Research Journal of Chemical Sciences, 6(7): 1-5.
- [10]. Rathore U., Prajapat G., Gupta R., Bhojak N., 2017. Conductometric, Potentiometric and Antimicrobial Investigations on Cu (II)-ThiosemicarbazoneSystems. European Journal of Advances in Engineering and Technology, 4(11): 828-835.
- [11]. Rathore U., Bhojak N., 2018. Micellar Spectral, Potentiometric and Biological Investigations on Mn (II)-Thiosemicarbazone Systems. Journal of Emerging Technologies and Innovative Research, 5(5): 1516-1521.

