A Theoretical Study of the Relationships between Electronic Structure and 5-HT ${ }_{1 \mathrm{~A}}$ and 5$\mathrm{HT}_{2 \mathrm{~A}}$ Receptor Binding Affinity of a group of ligands containing an isonicotinic nucleus

Juan S. Gómez-Jeria*, Jorge Abuter-Márquez

Quantum Pharmacology Unit, Department of Chemistry, Faculty of Sciences, University of Chile. Las Palmeras 3425, Santiago 7800003, Chile

Abstract

A formal quantum-chemical analysis of the relationships between the electronic structure of two series of isonicotinamide derivatives and their $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{1 \mathrm{~B}}$ receptor binding affinities was carried out. The electronic structure was calculated at the B3LYP/6-31G(d,p) after full geometry optimization. Statistically significant relationships were obtained for the four cases. The analysis of the results suggests what modifications of the molecules could be useful to raise receptor affinity. The partial 2D pharmacophores for the binding to each receptor suggest that both, $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$, seem to have a site that is rich in sigma electrons.

Keywords Serotonin, QSAR, KPG method, $5-\mathrm{HT}_{1 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~A}}$, pharmacophore, reactivity indices

Introduction

Serotonin receptors are a group of G protein-coupled receptors and ligand-gated ion channels found in the central and peripheral nervous systems. As their subtypes and effects have been discussed in previous publications, we refer the reader to the literature [1, 2]. Some of the main latest advances that deserve to be mentioned are in Refs. [3-9]. From a longtime our Unit has been studying the relationships between electronic structure and serotonergic receptor(s) binding affinity in structurally different groups of molecules [1, 2, 10-20]. As a new effort to get more information about these systems, we present here the results of quantum chemical study of the relationships between $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity and the electronic structure of a series of isonicotinamide derivatives.

Methods, models and calculations

The molecules were selected from a recent study[21]. They are shown in Figs. 1 and 2, and Tables 1 and 2[21]. The biological activity studied here is the in vitro affinity for serotonin $5 \mathrm{HT}_{1 \mathrm{~A}}$ and $5 \mathrm{HT}_{2 \mathrm{~A}}$ receptors measured in rat brain cortex with radioligand binding assays $\left(\left[{ }^{3} \mathrm{H}\right] 8-\mathrm{OH}-\mathrm{DPAT}\right.$ for $5 \mathrm{HT}_{1 \mathrm{~A}}$ receptors and $\left[{ }^{3} \mathrm{H}\right]$ ketanserin for $5 \mathrm{HT}_{2 \mathrm{~A}}$ receptors), expressed as $\mathrm{IC}_{50}[21]$.

Figure 1: General structure of molecules of Group A

Table 1: Structure and receptor affinities of Group A [21].

Mol.	Mol.	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{l o g}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$ $\mathbf{5 H T}_{\mathbf{1 A}}$	$\mathbf{l o g}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$ $\mathbf{5 H} \mathbf{H T}_{\mathbf{2 A}}$
1	3 a	H	H	H	0.94	2.30
2	3 b	OMe	H	H	-0.44	2.77
3	3 c	H	H	OMe	3.10	2.96
4	3 d	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	H	0.68	1.21
5	3 e	CN	H	H	1.18	1.74
6	3 f	CH_{3}	H	H	2.74	2.80
7	3 g	CH_{3}	CH_{3}	H	1.22	1.85
8	3 h	Cl	H	H	0.45	2.67
9	3 i	H	Cl	H	-0.09	1.55
10	3 j	H	H	Cl	2.52	2.82
11	3 k	H	Cl	Cl	2.66	0.99
12	31	F	H	H	1.03	-1.90
13	3 m	H	H	F	2.74	-1.34
14	3 n	H	H	H	0.03	-
15	3 o	$-*$	H	H	2.20	3.44
16	3 t	H	H	H	0.72	1.62

*: N instead of C .

Figure 2: General structure of molecules of Group B
Table 2: Structure and receptor affinities of Group B [21].

Mol.	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\log \left(\mathbf{I C}_{\mathbf{5 0}}\right)$ $\mathbf{5 H T}_{\mathbf{1 A}}$	$\mathbf{l o g}\left(\mathbf{I C}_{\mathbf{5 0}}\right)$ $\mathbf{5} \mathbf{H T}_{\mathbf{2 A}}$
1	H	H	H	1.75	2.05
2	OMe	H	H	1.14	-0.60
3	H	H	OMe	1.39	3.10
4	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	H	0.98	2.32
5	CN	H	H	2.09	2.26
6	CH_{3}	H	H	3.52	-
7	CH_{3}	CH_{3}	H	0.93	2.89
8	Cl	H	H	2.09	1.97
9	H	Cl	H	2.77	3.14
10	H	H	Cl	2.51	0.55
11	H	Cl	Cl	2.34	0.03
12	F	H	H	2.52	-1.41
13	H	H	F	2.00	-0.64
14	H	H	H	2.00	2.90
15	$-*$	H	H	0.96	-2.01
16	H	H	H	3.03	-

*: N instead of C .
To relate structure with activity we employed the formal KGP (Klopman-Peradejordi-Gómez) method [22]. As this technique has been the subject of a recent full review we refer the reader to the literature [23-30]. In summary, any
biological activity is related through a linear equation to a set of local atomic reactivity indices and the orientational parameters of the substituents. The applications of the KPG method to diverse biological activities and molecule during 2016-2017 showed its superiority over the empirical QSAR methods [2, 31-45].
The electronic structure of all molecules in their protonated form was calculated with the Density Functional Theory at the B3LYP/6-31G(d,p) level after full geometry optimization. The Gaussian suite of programs was used [46]. The numerical values for the LARIs were calculated from information inside the Gaussian results file with the D-CentQSAR software [47]. All the electron populations smaller than or equal to 0.01 e were considered as zero[24]. Negative electron populations coming from Mulliken Population Analysis were corrected as usual[48]. Orientational parameters were taken from published Tables or calculated as usual [49-51]. Given that the resolution of the system of linear equations is not possible because we have not enough experimental data, we employed Linear Multiple Regression Analysis (LMRA) techniques to find the best solution. For each case, a matrix containing the dependent variable $\left(\log \left(\mathrm{IC}_{50}\right)\right)$ and the local atomic reactivity indices of all atoms of the common skeleton as independent variables was built. The Statistica software was used for LMRA [52].

Results

Results for Group A

Figure 3 shows the common skeleton numbering of Group A that will be employed in the results and discussion.

Figure 3: Common skeleton numbering for Group A
Results for the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity of Group A.
The best equation obtained is:

$$
\log \left(\mathrm{IC}_{50}\right)=37.37+0.02 \phi_{4}+0.50 \mathrm{~S}_{19}^{\mathrm{E}}-30.5 \mathrm{~S}_{12}^{\mathrm{E}}(\mathrm{HOMO}-2) *-168.20 \mathrm{~F}_{4}(\mathrm{LUMO}) *
$$

with $\mathrm{n}=13, \mathrm{R}=0.98, \mathrm{R}^{2}=0.96$, adj $-\mathrm{R}^{2}=0.94, \mathrm{~F}(4,8)=49.23(\mathrm{p}<0.00001)$ and a standard error of estimate of0.23. No outliers were detected and no residuals fall outside the $\pm 2 \sigma$ limits. Here, φ_{4} is the orientational parameter of $\mathrm{R}_{4}, \mathrm{~S}_{19}{ }^{\mathrm{E}}$ is the total atomic electrophilic superdelocalizability of atom $19, \mathrm{~S}_{12}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$ is the electrophilic superdelocalizability of the third highest occupied molecular orbital localized on atom 12 and $\mathrm{F}_{4}(\mathrm{LUMO})^{*}$ is the Fukui index (electron population) of the lowest empty MO localized on atom 4. Tables 3 and 4 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 1. There are no significant internal correlations between independent variables (Table 4). Figure 4 displays the plot of observed $v s$. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Table 3: Beta coefficients and t-test for significance of coefficients in Eq. 1

Variable	Beta	$\mathbf{t}(\mathbf{8})$	p-level
φ_{4}	0.64	8.86	0.00002
$\mathrm{~S}_{19}{ }^{\mathrm{E}}$	0.22	2.94	0.019
$\mathrm{~S}_{12}{ }^{\mathrm{E}}$ (HOMO-2)*	-0.47	-6.30	0.0002
$\mathrm{~F}_{4}(\mathrm{LUMO})^{*}$	-0.29	-3.56	0.0074

Table 4: Matrix of squared correlation coefficients for the variables in Eq. 1

$\boldsymbol{\varphi}_{\mathbf{4}} \mathbf{S}_{\mathbf{1 9}}{ }^{\mathbf{E}} \mathbf{S}_{\mathbf{1 2}}{ }^{\mathrm{E}}$ (HOMO-2)* $\mathbf{F}_{\mathbf{4}}$ (LUMO)*			
φ_{4}	1.00		
$\mathrm{~S}_{19}{ }^{\mathrm{E}}$	0.00	1.00	
$\mathrm{~S}_{12}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$	0.00	0.01	1.00
$\mathrm{~F}_{4}(\mathrm{LUMO})$			

Figure 4: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 1). Dashed lines denote the 95% confidence interval The associated statistical parameters of Eq. 1 indicate that this equation is statistically significant and that the variation of the numerical values of a group of four local atomic reactivity indices of atoms of the common skeleton explains about 94% of the variation of $\log \left(\mathrm{IC}_{50}\right)$. Figure 4 , spanning about 3.5 orders of magnitude, shows that there is a good correlation of observed versus calculated values and that almost all points are inside the 95% confidence interval.

Results for the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity of Group A
The best equation obtained is:

$$
\begin{align*}
& \log \left(\mathrm{IC}_{50}\right)=-17.44-11.99 \mathrm{~S}_{8}^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}-72.14 \mathrm{~F}_{15}(\mathrm{HOMO}-2)^{*}-2.06 \mu_{10}+ \tag{2}\\
& +0.24 \mathrm{~S}_{23}^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}+1.52 \mathrm{~F}_{21}(\mathrm{HOMO}-1)^{*}
\end{align*}
$$

with $n=14, \mathrm{R}=0.99, \mathrm{R}^{2}=0.99$, adj- $\mathrm{R}^{2}=0.98, \mathrm{~F}(5,8)=147.63$ ($\mathrm{p}<0.000001$) and a standard error of estimate of0.20. No outliers were detected and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{S}_{8}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$ is the electrophilic superdelocalizability of the second highest occupied MO localized on atom $8, \mathrm{~F}_{15}(\mathrm{HOMO}-2) *$ is the Fukui index of the third occupied MO localized on atom $15, \mu_{10}$ is the local atomic electronic chemical potential of atom 10 , $\mathrm{S}_{23}{ }^{\mathrm{N}}$ (LUMO+2)* is the nucleophilic superdelocalizability of the third empty MO localized on atom 23 and F_{21} (HOMO-1)* is the Fukui index of the second highest occupied MO localized on atom 21.Tables 5 and 6 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 2. There are no significant internal correlations between independent variables (Table 6). Figure 5 displays the plot of observed vs. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Table 5: Beta coefficients and t-test for significance of coefficients in Eq. 2

Variable	Beta	t(8)	p-level
$\mathrm{S}_{8}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$	-0.82	-20.81	0.0000001
$\mathrm{~F}_{15}(\mathrm{HOMO}-2)^{*}$	-0.70	-16.93	0.0000001
μ_{10}	-0.26	-6.57	0.0002
$\mathrm{~S}_{23}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$	0.30	6.68	0.0002
$\mathrm{~F}_{21}(\mathrm{HOMO}-1) *$	0.17	3.73	0.006

Table 6: Matrix of squared correlation coefficients for the variables in Eq. 2

	$\mathrm{S}_{8}{ }^{\mathrm{E}}$ (HOMO-1)* $\mu_{10} \mathrm{~F}_{15}$ (HOMO-2)* F_{21} (HOMO-1)*			
μ_{10}	0.02	1.00		
F_{15} (HOMO-2)*	0.01	0.07	1.00	
F_{21} (HOMO-1)*	0.05	0.03	0.09	1.00
$\mathrm{S}_{23}{ }^{\mathrm{N}}$ (LUMO+2)*	0.07	0.05	0.04	0.14

Figure 5: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 2). Dashed lines denote the 95% confidence interval

The associated statistical parameters of Eq. 2 indicate that this equation is statistically significant and that the variation of the numerical values of a group of five local atomic reactivity indices of atoms of the common skeleton explains about 98% of the variation of the receptor affinity. Figure 5, spanning about five orders of magnitude, shows that there is a good correlation of observed versus calculated values and that almost all points are inside the 95\% confidence interval.
Local Molecular Orbitals
Table 7 shows the local molecular orbitals of atoms 4,8 and 12 . Table 8 shows the local molecular orbitals of atoms 15, 21 and 23 (see Fig. 3). Nomenclature: Molecule (HOMO) / (HOMO-2)* (HOMO-1)* (HOMO)* - (LUMO)* (LUMO+1)* (LUMO+2)*.

Table 7：Local Molecular Orbitals of atoms 4， 8 and 12

Molecule	Atom 4（C）	Atom 8（O）	Atom 12（H）
$1(83)$	$79 \pi 80 \pi 81 \sigma-84 \pi 85 \pi 88 \pi$	$79 \pi 80 \pi 81 \pi-84 \pi 86 \pi 88 \pi$	$67 \sigma 68 \sigma 76 \sigma-84 \sigma 86 \sigma 89 \sigma$
$2(91)$	$86 \pi 88 \pi 89 \sigma-92 \pi 93 \pi 97 \pi$	$86 \pi 88 \pi 89 \pi-92 \pi 95 \pi 97 \pi$	$63 \sigma 73 \sigma 74 \sigma-92 \sigma 94 \sigma 95 \sigma$
$3(91)$	$86 \pi 87 \pi 89 \sigma-92 \pi 93 \pi 96 \pi$	$86 \pi 87 \pi 89 \pi-92 \pi 94 \pi 95 \pi$	$73 \sigma 74 \sigma 84 \sigma-92 \sigma 94 \sigma 95 \sigma$
$4(95)$	$91 \pi 92 \pi 93 \sigma-96 \pi 97 \pi 99 \sigma$	$91 \pi 92 \pi 93 \pi-96 \pi 98 \pi 99 \pi$	$74 \sigma 75 \sigma 88 \sigma-96 \sigma 98 \sigma 100 \sigma$
$5(89)$	$85 \pi 86 \pi 88 \sigma-90 \pi 92 \pi 93 \pi$	$85 \pi 86 \pi 88 \pi-90 \pi 94 \pi 95 \pi$	$71 \sigma 73 \sigma 82 \sigma-90 \sigma 94 \sigma 95 \sigma$
$6(87)$	$82 \pi 83 \pi 85 \sigma-88 \pi 89 \pi 93 \pi$	$82 \pi 83 \pi 85 \pi-88 \pi 90 \pi 92 \pi$	$68 \sigma 69 \sigma 80 \sigma-88 \sigma 90 \sigma 93 \sigma$
$7(91)$	$86 \pi 87 \pi 89 \sigma-92 \pi 93 \pi 97 \pi$	$86 \pi 87 \pi 89 \pi-92 \pi 94 \pi 95 \pi$	$70 \sigma 72 \sigma 84 \sigma-92 \sigma 94 \sigma 97 \sigma$
$8(91)$	$87 \pi 88 \pi 89 \sigma-92 \pi 93 \pi 97 \pi$	$87 \pi 88 \pi 89 \pi-92 \pi 96 \pi 97 \pi$	$73 \sigma 74 \sigma 84 \sigma-92 \sigma 94 \sigma 96 \sigma$
$9(91)$	$87 \pi 88 \pi 89 \sigma-92 \pi 93 \pi 97 \pi$	$87 \pi 88 \pi 89 \pi-92 \pi 95 \pi 96 \pi$	$73 \sigma 74 \sigma 83 \sigma-92 \sigma 95 \sigma 96 \sigma$
$10(91)$	$86 \pi 88 \pi 89 \sigma-92 \pi 93 \pi 96 \pi$	$86 \pi 88 \pi 89 \pi-92 \pi 94 \pi 95 \pi$	$72 \sigma 74 \sigma 83 \sigma-92 \sigma 94 \sigma 95 \sigma$
$11(99)$	$94 \pi 96 \pi 97 \sigma-100 \pi 101 \pi 105 \pi$	$94 \pi 96 \pi 97 \pi-100 \pi 103 \pi 104 \pi$	$80 \sigma 82 \sigma 90 \sigma-100 \sigma 103 \sigma 104 \sigma$
$12(87)$	$83 \pi 86 \sigma 87 \sigma-88 \pi 89 \pi 93 \pi$	$83 \pi 86 \pi 87 \pi-88 \pi 92 \pi 93 \pi$	$71 \sigma 72 \sigma 80 \sigma-88 \sigma 92 \sigma 93 \sigma$
$13(87)$	$82 \pi 84 \pi 85 \sigma-88 \pi 89 \pi 93 \pi$	$82 \pi 84 \pi 85 \pi-88 \pi 90 \pi 91 \pi$	$71 \sigma 72 \sigma 80 \sigma-88 \sigma 90 \sigma 91 \sigma$
$14(83)$	$79 \pi 80 \pi 82 \sigma-84 \pi 85 \pi 86 \pi$	$79 \pi 80 \pi 82 \pi-84 \pi 88 \pi 89 \pi$	$64 \sigma 66 \sigma 67 \sigma-84 \sigma 87 \sigma 88 \sigma$
$15(83)$	$79 \pi 80 \pi 81 \sigma-84 \pi 86 \pi 88 \pi$	$79 \pi 80 \pi 81 \pi-84 \pi 88 \pi 89 \pi$	$67 \sigma 68 \sigma 77 \sigma-84 \sigma 87 \sigma 88 \sigma$
$16(96)$	$91 \pi 92 \pi 93 \sigma-97 \pi 99 \pi 102 \pi$	$91 \pi 92 \pi 93 \pi-97 \pi 100 \pi 102 \pi$	$74 \sigma 76 \sigma 88 \sigma-97 \sigma 100 \sigma 102 \sigma$

Table 8：Local Molecular Orbitals of atoms 15， 21 and 23

Molecule	Atom 15 （C）	Atom 21 （C）	Atom 23 （C）	Atom 24 （C）
1 （83）	75б78б83б－	$78 \pi 82 \pi 83 \pi$－	$78 \pi 82 \pi 83 \pi$－	$78 \sigma 82 \pi 83 \pi$－
	86\％87088б	$86 \pi 87 \pi 88 \pi$	$87 \pi 88 \pi 89 \pi$	$86 \pi 87 \pi 88 \pi$
2 （91）	$78 \sigma 87 \sigma 91 \sigma$－	$87 \pi 90 \pi 91 \pi$－	$87 \pi 90 \pi 91 \pi$－	$87 \pi 90 \pi 91 \sigma$－
	94б98б100б	$94 \pi 95 \pi 96 \pi$	$95 \pi 96 \pi 98 \pi$	$94 \pi 95 \pi 96 \pi$
3 （91）	82б88б91б－	$88 \pi 90 \pi 91 \pi$－	$88 \pi 90 \pi 91 \pi$－	$88 \pi 90 \pi 91 \pi$－
	94б97б101б	$94 \pi 95 \pi 97 \pi$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 97 \pi$
4 （95）	$83 \sigma 86 \sigma 90 \sigma$－	$90 \pi 94 \pi 95 \pi$－	$90 \pi 94 \pi 95 \pi$－	$90 \sigma 94 \pi 95 \pi$－
	103\％104б105	$98 \pi 99 \pi 101 \pi$	$99 \pi 100 \pi 101 \pi$	$98 \pi 99 \pi 100 \pi$
5 （89）	77б83の84б－	$84 \pi 87 \pi 89 \pi$－	$84 \pi 87 \pi 89 \pi$－	$84 \sigma 87 \pi 89 \pi$－
	93\％96\％97б	$91 \pi 92 \pi 93 \pi$	$91 \pi 93 \pi 102 \pi$	$91 \pi 92 \pi 93 \pi$
6 （87）	77б79б84б－	$79 \sigma 84 \pi 86 \pi$－	$84 \sigma 86 \pi 87 \pi$－	$84 \sigma 86 \pi 87 \pi$－
	92\％95 966	$90 \pi 91 \pi 92 \pi$	$91 \pi 92 \pi 93 \pi$	$90 \pi 91 \pi 92 \pi$
7 （91）	81，82б88б－	$88 \pi 90 \pi 91 \pi$－	$88 \pi 90 \pi 91 \pi$－	$88 \sigma 90 \pi 91 \sigma$－
	95\％96099	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$
8 （91）	$78 \sigma 80 \sigma 86 \sigma$－	$83 \sigma 86 \pi 90 \pi$－	$86 \pi 90 \pi 91 \pi$－	$86 \sigma 90 \pi 91 \sigma$－
	94\％100б101 σ	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$
9 （91）	82б86б91б－	$86 \pi 90 \pi 91 \pi$－	$86 \pi 90 \pi 91 \pi$－	$86 \pi 90 \pi 91 \pi$－
	94＊95\％99б	$94 \pi 96 \pi 99 \pi$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$
10 （91）	81б82б87б－	$87 \pi 90 \pi 91 \pi$－	$87 \pi 90 \pi 91 \pi$－	$87 \pi 90 \pi 91 \pi$－
	99\％101 6102σ	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$
11 （99）	88\％95\％99б－	$95 \sigma 98 \pi 99 \pi$－	$95 \pi 98 \pi 99 \pi$－	$95 \pi 98 \pi 99 \pi$－
	102 $\sigma 103 \sigma 108 \sigma$	$102 \pi 103 \pi 104 \pi$	$102 \pi 103 \pi 104 \pi$	$102 \pi 103 \pi 104 \pi$
12 （87）	79\％84の87б－	$84 \pi 85 \pi 87 \sigma$－	$85 \pi 86 \pi 87 \sigma$－	$84 \pi 85 \pi 87 \sigma$－
	90\％94б96\％	90 $991 \pi 99 \sigma$	$90 \pi 91 \pi 105 \pi$	$90 \pi 91 \pi 100 \sigma$
13 （87）	76б78б83б－	$83 \pi 86 \pi 87 \pi$－	$83 \pi 86 \pi 87 \pi$－	$83 \sigma 86 \pi 87 \pi$－
	95096098б	$90 \pi 91 \pi 92 \pi$	$90 \pi 91 \pi 92 \pi$	$90 \pi 91 \pi 92 \pi$
14 （83）	75\％76б83б－	$77 \pi 78 \pi 81 \sigma$－	$78 \pi 81 \sigma 83 \pi$－	$78 \pi 81 \sigma 83 \pi$－
	87б92の93\％	$85 \pi 86 \pi 87 \pi$	$85 \pi 86 \pi 87 \pi$	$85 \pi 86 \pi 87 \pi$
15 （83）	75\％82の83б－	$76 \pi 82 \sigma 83 \pi$－	$76 \pi 82 \sigma 83 \pi$－	$76 \pi 82 \sigma 83 \pi-$
		$85 \pi 87 \pi 88 \pi$	$85 \pi 87 \pi 88 \pi$	$85 \pi 87 \pi 88 \pi$
16 （96）	90б94б96\％－	$94 \pi 95 \pi 96 \pi$－	$90 \pi 94 \pi 95 \pi$－	$94 \pi 95 \pi 96 \pi$－
	98\％104б106 σ	$98 \pi 101 \pi 105 \pi$	$101 \pi 105 \pi 109 \pi$	$101 \pi 105 \pi 113 \pi$

Results for Group B
Figure 6 shows the common skeleton numbering of Group A that will be employed in the results and discussion.

Figure 6: Common skeleton numbering of group B
Results for the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity of Group B.
The best equation obtained is:
$\log \left(\mathrm{IC}_{50}\right)=-11.20-0.51 \mathrm{~S}_{21}^{\mathrm{N}}(\mathrm{LUMO}) *+1.88 \eta_{24}-0.42 \mathrm{~S}_{10}^{\mathrm{N}}(\mathrm{LUMO}+2) *+$
$+4.90 \mathrm{~F}_{13}(\mathrm{HOMO}-2)^{*}$
with $\mathrm{n}=16, \mathrm{R}=0.97, \mathrm{R}^{2}=0.94$, adj- $\mathrm{R}^{2}=0.92, \mathrm{~F}(4,11)=41.63(\mathrm{p}<0.000001)$ and a standard error of estimate of0.23. No outliers were detected and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{S}_{21}{ }^{\mathrm{N}}(\mathrm{LUMO}) *$ is the nucleophilic superdelocalizability of the lowest empty MO localized on atom $21, \eta_{24}$ is the local atomic hardness of atom 24 , $\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$ is the nucleophilic superdelocalizability of the third lowest empty MO localized on atom 10 and F_{13} (HOMO-2)* is the Fukui index of the third highest occupied MO localized on atom 13.Tables 9 and 10 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 3. There are no significant internal correlations between independent variables (Table 10). Figure 7 displays the plot of observed vs. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Figure 7: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 3). Dashed lines denote the 95% confidence interval
Table 9: Beta coefficients and t-test for significance of coefficients in Eq. 3

Variable	Beta	t(11)	p-level
$\mathrm{S}_{21}{ }^{\mathrm{N}}$ (LUMO)*	-1.17	-11.17	0.000000
η_{24}	0.68	8.40	0.000004
$\mathrm{~S}_{10}{ }^{\mathrm{N}}$ (LUMO+2)*	-0.42	-5.20	0.0003
$\mathrm{~F}_{13}$ (HOMO-2)*	0.34	3.50	0.005

Table 10: Matrix of squared correlation coefficients for the variables in Eq. 3

$\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*} \mathrm{~F}_{13}(\mathrm{HOMO}-2)^{*} \mathrm{~S}_{21}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$			
$\mathrm{~F}_{13}(\mathrm{HOMO}-2)^{*}$	0.07	1.00	
$\mathrm{~S}_{21}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$	0.12	0.41	1.00
η_{24}	0.01	0.04	0.14

The associated statistical parameters of Eq. 3 indicate that this equation is statistically significant and that the variation of the numerical values of a group of four local atomic reactivity indices of atoms of the common skeleton explains about 92% of the variation of the receptor affinity. Figure 7, spanning about 2.6 orders of magnitude, shows that there is a good correlation of observed versus calculated values and that almost all points are inside the 95% confidence interval.

Results for the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity of Group B.
The best equation obtained was:

$$
\begin{equation*}
\log \left(\mathrm{IC}_{50}\right)=2.07-0.42 \mathrm{~S}_{15}^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}-23.11 \mathrm{~F}_{16}(\mathrm{HOMO}-2)^{*}-27.49 \mathrm{~F}_{19}(\mathrm{LUMO}+2)^{*} \tag{4}
\end{equation*}
$$

with $\mathrm{n}=10, \mathrm{R}=0.99, \mathrm{R}^{2}=0.98$, adj $-\mathrm{R}^{2}=0.97, \mathrm{~F}(3,6)=99.07(\mathrm{p}<0.00002)$ and a standard error of estimate of 0.28 . No outliers were detected and no residuals fall outside the $\pm 2 \sigma$ limits. Here, $\mathrm{S}_{15}{ }^{\mathrm{N}}(\mathrm{LUMO}+2) *$ is the nucleophilic superdelocalizability of the third lowest MO localized on atom $15, \mathrm{~F}_{16}(\mathrm{HOMO}-2)^{*}$ is the Fukui index of the third highest occupied MO localized on atom 16 and $\mathrm{F}_{19}(\mathrm{LUMO}+2)^{*}$ is the Fukui index of the third lowest empty MO localized on atom 19.Tables 11 and 12 show the beta coefficients, the results of the t-test for significance of coefficients and the matrix of squared correlation coefficients for the variables of Eq. 4. There are no significant internal correlations between independent variables (Table 12). Figure 8 displays the plot of observed vs. calculated $\log \left(\mathrm{IC}_{50}\right)$.

Figure 8: Plot of predicted vs. observed $\log \left(I C_{50}\right)$ values (Eq. 4). Dashed lines denote the 95% confidence interval.
Table 11: Beta coefficients and t-test for significance of coefficients in Eq. 4

Variable	Beta	t(6)	p-level
$\mathrm{S}_{15} \mathrm{~N}(\mathrm{LUMO}+2)^{*}$	-0.33	-5.21	0.002
$\mathrm{~F}_{16}(\mathrm{HOMO}-2)^{*}$	-0.39	-6.29	0.0007
$\mathrm{~F}_{19}(\mathrm{LUMO}+2)^{*}$	$-0.93-15.49$	0.000005	

Table 12: Matrix of squared correlation coefficients for the variables in Eq. 4

	$\mathrm{S}_{15}{ }^{\mathrm{N}}$ (LUMO+2)* $\mathrm{F}_{16}(\mathrm{HOMO}-2)^{*}$	
$\mathrm{F}_{16}(\mathrm{HOMO}-2)^{*}$	0.13	1.00
$\mathrm{F}_{19}(\mathrm{LUMO}+2)^{*}$	0.08	0.01

The associated statistical parameters of Eq. 4 indicate that this equation is statistically significant and that the variation of the numerical values of a group of three local atomic reactivity indices of atoms of the common skeleton explains about 97% of the variation of the receptor affinity. Figure 8, spanning about 4.5 orders of magnitude, shows that there is a good correlation of observed versus calculated values and that almost all points are inside the 95% confidence interval.

Local Molecular Orbitals
Table 13 shows the local molecular orbitals of atoms 10,13 and 15 . Table 14 shows the local molecular orbitals of atoms 16, 19, 21 and 24 (see Fig. 6). Nomenclature: Molecule (HOMO) / (HOMO-2)* (HOMO-1)* (HOMO)* (LUMO)* $(\mathrm{LUMO}+1)^{*}(\mathrm{LUMO}+2) *$.

Table 13: Local Molecular Orbitals of atoms 10, 13 and 15

Molecule	Atom 10 (C)	Atom 13 (C)	Atom 15 (C)
$1(87)$	$80 \sigma 81 \sigma 82 \sigma-93 \sigma 94 \sigma 95 \sigma$	$74 \sigma 75 \sigma 80 \sigma-90 \sigma 91 \sigma 92 \sigma$	$74 \sigma 83 \sigma 87 \sigma-90 \sigma 94 \sigma 95 \sigma$
$2(95)$	$88 \sigma 89 \sigma 90 \sigma-102 \sigma 104 \sigma 105 \sigma$	$80 \sigma 83 \sigma 88 \sigma-98 \sigma 101 \sigma 103 \sigma$	$82 \sigma 86 \sigma 93 \sigma-98 \sigma 101 \sigma 103 \sigma$
$3(95)$	$87 \sigma 89 \sigma 90 \sigma-101 \sigma 102 \sigma 103 \sigma$	$81 \sigma 82 \sigma 87 \sigma-99 \sigma 101 \sigma 102 \sigma$	$80 \sigma 82 \sigma 93 \sigma-99 \sigma 102 \sigma 103 \sigma$
$4(99)$	$92 \sigma 93 \sigma 94 \sigma-105 \sigma 106 \sigma 107 \sigma$	$84 \sigma 85 \sigma 92 \sigma-103 \sigma 105 \sigma 106 \sigma$	$86 \sigma 90 \sigma 98 \sigma-103 \sigma 106 \sigma 107 \sigma$
$5(93)$	$86 \sigma 87 \sigma 88 \sigma-94 \sigma 99 \sigma 101 \sigma$	$78 \sigma 79 \sigma 80 \sigma-98 \sigma 99 \sigma 101 \sigma$	$80 \sigma 82 \sigma 93 \sigma-98 \sigma 99 \sigma 102 \sigma$
$6(91)$	$84 \sigma 85 \sigma 86 \sigma-97 \sigma 98 \sigma 99 \sigma$	$77 \sigma 78 \sigma 84 \sigma-94 \sigma 95 \sigma 96 \sigma$	$83 \sigma 87 \sigma 91 \sigma-94 \sigma 95 \sigma 98 \sigma$
$7(95)$	$88 \sigma 89 \sigma 90 \sigma-101 \sigma 102 \sigma 103 \sigma$	$80 \sigma 81 \sigma 88 \sigma-98 \sigma 101 \sigma 102 \sigma$	$84 \sigma 92 \sigma 95 \sigma-98 \sigma 102 \sigma 103 \sigma$
$8(95)$	$87 \sigma 89 \sigma 90 \sigma-101 \sigma 102 \sigma 104 \sigma$	$81 \sigma 82 \sigma 87 \sigma-99 \sigma 100 \sigma 101 \sigma$	$82 \sigma 84 \sigma 91 \sigma-98 \sigma 99 \sigma 100 \sigma$
$9(95)$	$87 \sigma 88 \sigma 90 \sigma-101 \sigma 102 \sigma 103 \sigma$	$81 \sigma 82 \sigma 87 \sigma-98 \sigma 99 \sigma 100 \sigma$	$82 \sigma 91 \sigma 95 \sigma-98 \sigma 99 \sigma 100 \sigma$
$10(95)$	$87 \sigma 88 \sigma 89 \sigma-101 \sigma 102 \sigma 103 \sigma$	$80 \sigma 81 \sigma 87 \sigma-98 \sigma 99 \sigma 100 \sigma$	$84 \sigma 86 \sigma 91 \sigma-98 \sigma 99 \sigma 100 \sigma$
$11(103)$	$94 \sigma 96 \sigma 97 \sigma-109 \sigma 111 \sigma 112 \sigma$	$87 \sigma 88 \sigma 94 \sigma-106 \sigma 108 \sigma 109 \sigma$	$88 \sigma 89 \sigma 99 \sigma-107 \sigma 108 \sigma 110 \sigma$
$12(91)$	$84 \sigma 85 \sigma 86 \sigma-97 \sigma 98 \sigma 100 \sigma$	$78 \sigma 79 \sigma 84 \sigma-96 \sigma 97 \sigma 98 \sigma$	$78 \sigma 83 \sigma 91 \sigma-96 \sigma 98 \sigma 99 \sigma$
$13(91)$	$84 \sigma 85 \sigma 86 \sigma-97 \sigma 98 \sigma 99 \sigma$	$79 \sigma 80 \sigma 84 \sigma-94 \sigma 95 \sigma 96 \sigma$	$80 \sigma 87 \sigma 91 \sigma-94 \sigma 95 \sigma 96 \sigma$
$14(87)$	$79 \sigma 81 \sigma 82 \sigma-93 \sigma 94 \sigma 96 \sigma$	$75 \sigma 76 \sigma 79 \sigma-91 \sigma 92 \sigma 93 \sigma$	$74 \sigma 80 \sigma 87 \sigma-91 \sigma 92 \sigma 94 \sigma$
$15(87)$	$81 \sigma 82 \sigma 83 \sigma-93 \sigma 94 \sigma 95 \sigma$	$75 \sigma 76 \sigma 81 \sigma-92 \sigma 93 \sigma 94 \sigma$	$78 \sigma 80 \sigma 87 \sigma-91 \sigma 92 \sigma 94 \sigma$
$16(100)$	$92 \sigma 93 \sigma 94 \sigma-106 \sigma 107 \sigma 110 \sigma$	$83 \sigma 85 \sigma 92 \sigma-105 \sigma 106 \sigma 107 \sigma$	$86 \sigma 88 \sigma 98 \sigma-105 \sigma 107 \sigma 108 \sigma$

Table 14: Local Molecular Orbitals of atoms 16, 19, 21 and 24

Molecule	Atom 16 (C)	Atom 19 (C)	Atom 21 (C)	Atom 24 (C)
$1(87)$	$78 \sigma 79 \sigma 83 \sigma-$	$77 \sigma 78 \sigma 83 \sigma-$	$83 \sigma 86 \pi 87 \pi-$	$83 \pi 86 \pi 87 \pi-$
	$90 \sigma 91 \sigma 95 \sigma$	$90 \sigma 91 \sigma 92 \sigma$	$90 \pi 91 \pi 92 \pi$	$90 \pi 91 \pi 92 \pi$
$2(95)$	$82 \sigma 91 \sigma 93 \sigma-$	$82 \sigma 86 \sigma 93 \sigma-$	$91 \pi 93 \sigma 95 \pi-$	$87 \pi 93 \sigma 95 \pi-$
	$97 \sigma 101 \sigma 103 \sigma$	$98 \sigma 101 \sigma 104 \sigma$	$97 \pi 100 \pi 101 \sigma$	$97 \pi 100 \pi 111 \sigma$
$3(95)$	$88 \sigma 93 \sigma 95 \sigma-$	$80 \sigma 82 \sigma 93 \sigma-$	$93 \sigma 94 \pi 95 \pi-$	$93 \sigma 94 \pi 95 \pi-$
	$98 \sigma 100 \sigma 105 \sigma$	$99 \sigma 100 \sigma 102 \sigma$	$98 \pi 100 \pi 111 \sigma$	$98 \pi 100 \pi 108 \sigma$
$4(99)$	$88 \sigma 97 \sigma 98 \sigma-$	$86 \sigma 90 \sigma 98 \sigma-$	$97 \pi 98 \sigma 99 \pi-$	$91 \pi 98 \sigma 99 \pi-$
	$102 \sigma 104 \sigma 107 \sigma$	$103 \sigma 104 \sigma 105 \sigma$	$102 \pi 103 \pi 104 \pi$	$102 \pi 103 \pi 104 \pi$
$5(93)$	$84 \sigma 90 \sigma 93 \sigma-$	$80 \sigma 82 \sigma 93 \sigma-$	$90 \pi 91 \pi 93 \sigma-$	$84 \pi 85 \sigma 91 \pi-$
	$95 \sigma 96 \sigma 98 \sigma$	$98 \sigma 102 \sigma 103 \sigma$	$95 \pi 96 \pi 100 \sigma$	$95 \pi 96 \pi 106 \pi$
$6(91)$	$81 \sigma 83 \sigma 87 \sigma-$	$78 \sigma 81 \sigma 87 \sigma-$	$87 \sigma 90 \pi 91 \pi-$	$87 \sigma 90 \pi 91 \pi-$

	$94 \sigma 99 \sigma 101 \sigma$	$94 \sigma 95 \sigma 98 \sigma$	$95 \pi 96 \pi 98 \pi$	$95 \pi 96 \pi 98 \pi$
$7(95)$	$85 \sigma 86 \sigma 92 \sigma-$	$85 \sigma 86 \sigma 92 \sigma-$	$92 \sigma 94 \pi 95 \pi-$	$92 \sigma 94 \pi 95 \pi-$
	$99 \sigma 103 \sigma 105 \sigma$	$98 \sigma 99 \sigma 102 \sigma$	$98 \pi 99 \pi 100 \pi$	$98 \pi 99 \pi 100 \pi$
$8(95)$	$88 \sigma 91 \sigma 95 \sigma-$	$82 \sigma 91 \sigma 95 \sigma-$	$91 \sigma 94 \pi 95 \pi-$	$91 \sigma 94 \pi 95 \pi-$
	$98 \sigma 100 \sigma 104 \sigma$	$99 \sigma 100 \sigma 101 \sigma$	$98 \pi 99 \pi 101 \sigma$	$98 \pi 99 \pi 102 \sigma$
$9(95)$	$85 \sigma 86 \sigma 91 \sigma-$	$84 \sigma 86 \sigma 91 \sigma-$	$91 \sigma 94 \pi 95 \pi-$	$91 \pi 94 \pi 95 \pi-$
	$103 \sigma 106 \sigma 107 \sigma$	$98 \sigma 99 \sigma 100 \sigma$	$98 \pi 99 \pi 100 \pi$	$98 \pi 99 \pi 100 \pi$
$10(95)$	$86 \sigma 91 \sigma 95 \sigma-$	$79 \sigma 80 \sigma 91 \sigma-$	$91 \sigma 93 \pi 95 \pi-$	$91 \pi 93 \pi 95 \pi-$
	$98 \sigma 100 \sigma 103 \sigma$	$98 \sigma 99 \sigma 100 \sigma$	$98 \pi 99 \pi 100 \pi$	$98 \pi 99 \pi 102 \pi$
$11(103)$	$90 \sigma 92 \sigma 99 \sigma-$	$89 \sigma 92 \sigma 99 \sigma-$	$99 \sigma 102 \pi 103 \pi-$	$99 \pi 102 \pi 103 \pi-$
	$112 \sigma 114 \sigma 115 \sigma$	$106 \sigma 107 \sigma 108 \sigma$	$106 \pi 107 \pi 108 \pi$	$106 \pi 107 \pi 110 \sigma$
$12(91)$	$83 \sigma 88 \sigma 91 \sigma-$	$78 \sigma 83 \sigma 91 \sigma-$	$83 \sigma 89 \pi 91 \sigma-$	$83 \sigma 89 \pi 91 \sigma-$
	$93 \sigma 98 \sigma 99 \sigma$	$96 \sigma 98 \sigma 100 \sigma$	$93 \pi 95 \pi 98 \sigma$	$93 \pi 95 \pi 109 \sigma$
$13(91)$	$80 \sigma 82 \sigma 87 \sigma-$	$80 \sigma 82 \sigma 87 \sigma-$	$87 \sigma 89 \pi 91 \pi-$	$87 \pi 89 \pi 91 \pi-$
	$99 \sigma 101 \sigma 102 \sigma$	$94 \sigma 95 \sigma 96 \sigma$	$94 \pi 95 \pi 96 \pi$	$94 \pi 95 \pi 96 \pi$
$14(87)$	$77 \sigma 80 \sigma 87 \sigma-$	$75 \sigma 80 \sigma 87 \sigma-$	$83 \pi 84 \sigma 87 \pi-$	$83 \pi 84 \sigma 87 \pi-$
	$91 \sigma 94 \sigma 97 \sigma$	$91 \sigma 92 \sigma 94 \sigma$	$89 \pi 91 \pi 92 \pi$	$89 \pi 91 \pi 92 \pi$
$15(87)$	$80 \sigma 86 \sigma 87 \sigma-$	$78 \sigma 80 \sigma 87 \sigma-$	$81 \sigma 86 \sigma 87 \pi-$	$80 \sigma 86 \sigma 87 \pi-$
	$92 \sigma 95 \sigma 97 \sigma$	$91 \sigma 92 \sigma 94 \sigma$	$89 \pi 91 \pi 92 \pi$	$89 \pi 91 \pi 92 \pi$
$16(100)$	$88 \sigma 95 \sigma 98 \sigma-$	$86 \sigma 88 \sigma 98 \sigma-$	$98 \sigma 99 \pi 100 \pi-$	$95 \pi 98 \sigma 99 \pi-$
	$102 \sigma 108 \sigma 109 \sigma$	$105 \sigma 106 \sigma 107 \sigma$	$102 \pi 104 \pi 108 \pi$	$104 \pi 107 \pi 108 \pi$

Discussion

The discussion will be separated in two sections corresponding to each kind of receptor, allowing a better integration of results.
Discussion of the results of the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity of Groups A and B.
Discussion of the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity of Group A.
For group ATable 5 shows that the importance of variables in Eq. 1 is $\varphi_{4} \gg \mathrm{~S}_{12}{ }^{\mathrm{E}}(\mathrm{HOMO}-2) * \gg \mathrm{~F}_{4}(\mathrm{LUMO}) *>\mathrm{S}_{19}{ }^{\mathrm{E}}$. In the following discussions we shall employ the approximate variable-by-variable (VbV) method. By considering the sign associated to each variable in Eq. 1 together with the positive or negative value of the local atomic reactivity indices, a high receptor affinity is associated with small values of φ_{4}, large (negative) values of $S_{19}{ }^{\mathrm{E}}$, small (negative) values of $\mathrm{S}_{12}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$ and large values of $\mathrm{F}_{4}(\mathrm{LUMO})^{*} . \varphi_{4}$ is the orientational parameter of the R_{4} substituent. A small value of the OP demands a small substituent, like H.Table 1 suggests that, for getting more information about the nature of an appropriate R_{4} substituent, a methyl group will be apt. Another possibility is simply substituting the carbon atom 22 by a nitrogen atom. On the other hand we need to consider that the modification of R_{4} must not alter in a significant way the electronic structure of the system. Atom 12 is a hydrogen atom attached to N 9 (see Fig. 3). All local MOs are of σ nature (Table 7). In all molecules the local (HOMO) ${ }_{12}{ }^{*}$ is situated very far from the corresponding molecular HOMO (Table 7). Small (negative) values of $\mathrm{S}_{12}{ }^{\mathrm{E}}(\mathrm{HOMO}-2)^{*}$ are associated with high receptor affinity. Small values for this index are obtained by lowering the associated eigenvalue and/or by lowering the electron population of this MO. On this basis we suggest that the H atom is participating in an N-H...X hydrogen bond. Atom 4 is a carbon atom in ring A (Fig. 3). A high receptor affinity is associated with large values of $\mathrm{F}_{4}(\mathrm{LUMO}) *$. Table 7 shows that the local (LUMO) ${ }_{4}{ }^{*}$ has a π nature and that it coincides with the molecular LUMO. Note also that all (HOMO) ${ }_{4}{ }^{*}$ have a σ nature in all molecules Therefore, we suggest that atom 4 is interacting with an electron rich center, possible of the $\pi-\pi$ kind.Atom 19 is a carbon atom in ring C (Fig. 3). A high receptor affinity is associated with large (negative) values of $\mathrm{S}_{19}{ }^{\mathrm{E}}$, suggesting that this atom is acting as an electron donor.All the above suggestions are displayed in the partial 2D pharmacophore of Fig. 9.

Figure 9: Partial 2D pharmacophore for the 5-HT $T_{I A}$ binding affinity of group A.
Discussion of the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor binding affinity of Group B.
For group B Table 9 shows that the importance of variables in Eq. 3 is $S_{21}{ }^{\mathrm{N}}$ (LUMO)*> $\eta_{24}>\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*>}$ F_{13} (HOMO-2)*.By considering the sign associated to each variable in Eq. 3 together with the positive or negative value of the local atomic reactivity indices, we can see that a high receptor affinity is associated with a small value for η_{24} and a small value for $F_{13}(\mathrm{HOMO}-2)^{*}$. If $S_{21}{ }^{\mathrm{N}}(\mathrm{LUMO})^{*}$ is positive, a high receptor affinity is associated with a high numerical value for this reactivity index. The same holds for the case of a positive value for $\mathrm{S}_{10}{ }^{\mathrm{N}}(\mathrm{LUMO}+2) *$. Atom 21 is a carbon in ring C (Fig. 6). Table 14 shows that (LUMO) $)_{21}{ }^{*}$ has a π nature in all molecules. A high receptor affinity is associated with high numerical values for $\mathrm{S}_{21}{ }^{\mathrm{N}}$ (LUMO)*. These values are obtained by lowering the energy of this MO, making it more reactive. Therefore, it is suggested that this atom is interacting with an electron-rich center (probably through a $\pi-\pi$ interaction). Atom 24 is a carbon in ring C (Fig. 6). A high receptor affinity is associated with low numerical values for this local atomic hardness, η_{24} (the HOMO*-LUMO* energy gap). It is almost always a positive number (it has a zero value in the case of metals and in some atoms of semimetals). If we interpret the local atomic hardness as the resistance of an atom to exchange electrons with the milieu, a small value indicates that, for a higher receptor affinity, atom 24 should be more reactive. Now, Table 14 shows that in almost all molecules the local HOMO* coincides with the molecular HOMO, while the local LUMO* corresponds to higher empty molecular MOs. Then, the only way to get a smaller HOMO*-LUMO* energy gap is by shifting downwards the LUMO* eigenvalue energy. This suggests that atom 24 is interacting with an electronrich center. Atom 10 is a saturated carbon in the chain linking N9 with ring B (Fig. 6). All local MOs have σ nature (Table 13). If $\mathrm{S}_{21}{ }^{\mathrm{N}}$ (LUMO)* is positive, then a high affinity is associated with high numerical values for this index. These values are obtained by shifting downwards the MO eigenvalue; making the MO more reactive.

Figure 10: Partial 2D pharmacophore for the 5-HT $T_{1 A}$ binding affinity of group B

On this basis we suggest that atom 10 is interacting with an electron-rich center. Atom 13 is a saturated carbon in the chain linking N 9 with ring B (Fig. 6). All local MOs have σ nature (Table 13). As $\mathrm{F}_{13}(\mathrm{HOMO}-2)^{*}$ is always positive, a high affinity is associated with a low electron population on this local MO*. We may observe also in Table 14 that the three highest occupied local MOs of atom 13 are far below from the molecule's HOMO, suggesting that this atom cannot act as an electron donor. Therefore, we suggest that atom 13 is interacting with an electron-rich center. All the above suggestions are displayed in the partial 2D pharmacophore of Fig. 10.

Discussion of the results of the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity of Groups A and B .
Discussion of the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity of Group A.
For group ATable 5 shows that the importance of variables in Eq. 2 isS ${ }_{8}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}>\mathrm{F}_{15}(\mathrm{HOMO}-2)^{*>}$ $\mathrm{S}_{23}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}>\mu_{10}>\mathrm{F}_{21}(\mathrm{HOMO}-1)^{*}$. Analyzing the sign associated with each variable in Eq. 2 together with the positive or negative value of the local atomic reactivity indices, we can see that a high receptor affinity is associated with low numerical values for $\mathrm{S}_{8}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$ (that is always a negative number), high numerical values for F_{15} (HOMO-2)* (that is always a positive number), small numerical values for μ_{10} (that is always a negative number) and small numerical values for $\mathrm{F}_{21}(\mathrm{HOMO}-1)^{*}$. If $\mathrm{S}_{23}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$ is a positive number, then a high affinity is associated with small numerical values for this index. Atom 8 is a carbonyl oxygen atom in the chain linking rings A and B (Fig. 3). Table 7 shows that the three lowest empty and the three highest occupied MOs have π nature and that only the local LUMO* coincides with the molecular LUMO. Small negative values for $\mathrm{S}_{8}{ }^{\mathrm{E}}(\mathrm{HOMO}-1)^{*}$ are obtained by lowering the (HOMO-1) ${ }_{8}{ }^{*}$ energy, making this MO less reactive. This allows us to suggest that atom 8 is interacting with the receptor as an electron acceptor. Atom 15 is a saturated carbon atom in ring B (Fig. 3). Table 7 shows that all local MOs have σ nature. High numerical values for $\mathrm{F}_{15}(\mathrm{HOMO}-2)^{*}$ are obtained by increasing the electron population on this MO. This suggests that atom 15 is interacting with an electron deficient center. Atom 10 is a saturated carbon atom in the chain linking rings A and B (Fig. 3). Table 7 shows that all local MOs have σ nature. μ_{10} is the local atomic electronic chemical potential of atom 10 . A high affinity is associated with small numerical negative values for μ_{10}. For reasons exposed in another paper [37], the best way to get these values is by shifting upwards the energy of the local LUMO*; making this MO less reactive. Therefore, we suggest that atom 10 is interacting with an electron-deficient center. This coincides with the standard interpretation stating that a small negative value of this index implies a good electron donor. Atom 23 is a carbon atom in ring C (Fig. 3). Table 8shows that all molecules but one the local HOMO*s of this atom have π nature. If $\mathrm{S}_{23}{ }^{\mathrm{N}}(\mathrm{LUMO}+2) *$ is positive, a high affinity is related to small numerical values for this index. These values are obtained by shifting upwards the energy of this local MO; making it less reactive. This suggests that this atom is interacting with an electron-deficient center. Atom 21 is a carbon atom in ring C (Fig. 3). Table 8 shows that all molecules but one the local (HOMO-1)*s of this atom have π nature. The analysis of this index suggests that this atom is interacting with an electron-rich center. All the above suggestions are displayed in the partial 2D pharmacophore of Fig. 11.

Figure 11: Partial 2D pharmacophore for the 5-HT $T_{2 A}$ binding affinity of group A

Discussion of the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor binding affinity of Group B.
For group BTable 11 shows that the importance of variables in Eq. 4 is $\mathrm{F}_{19}(\mathrm{LUMO}+2) * \gg \mathrm{~F}_{16}(\mathrm{HOMO}-2)^{*>}$ $\mathrm{S}_{15}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$. Analyzing the sign associated with each variable in Eq. 4 and the positive or negative value of the local atomic reactivity indices, we can see that a high $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor affinity is associated with small numerical values for $\mathrm{F}_{16}(\mathrm{HOMO}-2)^{*}$ and $\mathrm{F}_{19}(\mathrm{LUMO}+2)^{*}$. If the numerical value of $\mathrm{S}_{15}{ }^{\mathrm{N}}(\mathrm{LUMO}+2)^{*}$ is positive, then a high affinity is associated with high numerical values for this index. Atom 15 is a carbon in ring B (Fig. 6). All local MOs have σ nature (Table 13). High positive numerical values for this index are obtained by shifting downwards the value corresponding eigenvalue; making this MO more reactive. Therefore, it is suggested that atom 15 is interacting with an electron-rich center. Atom 16 is a carbon in ring B (Fig. 6). All local MOs have σ nature (Table 14). Small numerical values for $\mathrm{F}_{16}(\mathrm{HOMO}-2)^{*}$ are obtained by incrementing the electron population of (HOMO2) 16^{*}. Accordingly to this, atom 16 should be interacting with an electron-deficient center. Atom 19 is a carbon in ring B (Fig. 6). All local MOs have σ nature (Table 14).Small numerical values for $\mathrm{F}_{19}(\mathrm{LUMO}+2) *$ are obtained by diminishing the electron population of $(\mathrm{LUMO}+2)_{19}{ }^{*}$. Therefore, it is suggested that atom 19 is interacting with an electron-deficient center. All the above suggestions are displayed in the partial 2D pharmacophore of Fig. 12.

Figure 12: Partial 2D pharmacophore for the 5-HT $T_{2 A}$ binding affinity of group B
Integration of pharmacophores.
For both series of molecules we may integrate the partial 2 D pharmacophores for the binding to each receptor to have an approximate view of what could be happening. For the integration, we have assumed that rings A and C (the aromatic ones) of both series of molecules bind to the same sites of the receptor.
2 D pharmacophore integration for $5-\mathrm{HT}_{1 \mathrm{~A}}$ binding.
Figure 13 shows the integrated pharmacophore.

Figure 13: Partial 2D integrated pharmacophore for 5-HT $T_{1 A}$ binding of groups A and B.

The integrated partial pharmacophore allow suggesting that rings A and C are interacting with sites having π electrons (aromatic rings, carboxylate moieties, etc.). In a recent analysis of the interaction of 2,5dimethoxyphenethylamines and their N -2-methoxybenzyl-substituted analogs with $5-\mathrm{HT}_{1 \mathrm{~A}}$ serotonin receptors[1] it was suggested that the methanediyl groups of the ethylamine side chain seemed to interact with a site or sites having sigma electrons. If the integration presented here is correct, then we are again in presence of a three dimensional receptor site having occupied σ MOs (in ancient chemistry these sites were called sometimes "hydrophobic pockets"). The appearance in ring C of three carbon atoms strongly suggests that this ring is involved in $\pi-\pi$ aromatic interactions with the receptor.
2 D pharmacophore integration for $5-\mathrm{HT}_{2 \mathrm{~A}}$ binding.
Figure 14 shows the integrated pharmacophore.

Figure 14: Partial 2D integrated pharmacophore for $5-H T_{2 A}$ binding of groups A and B.
The analysis of Fig. 14 again suggests the presence of a site rich in sigma electrons but now in the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor. Again ring C seems to interact with a site through $\pi-\pi$ interactions. This similitude between the integrated pharmacophores suggests two possibilities. The first one states that this is only a mere coincidence. The second one states that both receptors have a similar binding volume conserved during evolution.

References

1. J. S. Gómez-Jeria, C. Moreno-Rojas, Chemistry Research Journal, 2017, 2, 27.
2. J. S. Gómez-Jeria, M. B. Becerra-Ruiz, International Journal of Advances in Pharmacy, Biology and Chemistry, 2017, 6, 72.
3. S. Aznar, M. E.-S. Hervig, Neuroscience \& Biobehavioral Reviews, 2016, 64, 63.
4. S. Köhler, K. Cierpinsky, G. Kronenberg, M. Adli, Journal of Psychopharmacology, 2016, $30,13$.
5. M. Oostland, J. A. van Hooft, "Serotonin in the Cerebellum," in Essentials of Cerebellum and Cerebellar Disorders: A Primer For Graduate Students, D. L. Gruol, N. Koibuchi, M. Manto, M. Molinari, J. D. Schmahmann, and Y. Shen Eds., pp. 243, Springer International Publishing, Cham, 2016.
6. J. M. Palacios, Brain Research, 2016, 1645, 46.
7. R. Kraehenmann, D. Pokorny, L. Vollenweider, K. H. Preller, T. Pokorny, E. Seifritz, F. X. Vollenweider, Psychopharmacology, 2017, 234, 2031.
8. J. F. López-Giménez, J. González-Maeso, "Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways," in Curr Top Behav Neurosci., pp. 1, Springer, Berlin, Heidelberg, 2017.
9. D. Wacker, S. Wang, J. D. McCorvy, R. M. Betz, A. J. Venkatakrishnan, A. Levit, K. Lansu, Z. L. Schools, T. Che, D. E. Nichols, B. K. Shoichet, R. O. Dror, B. L. Roth, Cell, 2017, 168, 377.
10. J. S. Gómez-Jeria, A. Robles-Navarro, Res. J. Pharmac. Biol. Chem. Sci., 2015, 6, 1358.
11. J. S. Gómez-Jeria, A. Robles-Navarro, J. Comput. Methods Drug Des., 2015, 5, 45.
12. J. S. Gómez-Jeria, A. Robles-Navarro, Der Pharma Chem., 2015, 7, 243.
13. P. Richter, A. Morales, J. S. Gomez-Jeria, D. Morales-Lagos, Analyst, 1988, 113, 859.
14. J. S. Gómez-Jeria, B. K. Cassels, J. C. Saavedra-Aguilar, Eur. J. Med. Chem., 1987, 22, 433.
15. J. S. Gómez-Jeria, D. Morales-Lagos, B. K. Cassels, J. C. Saavedra-Aguilar, Quant. Struct.-Relat., 1986, 5, 153.
16. J. S. Gómez-Jeria, B. K. Cassels, R. E. Clavijo, V. Vargas, R. Quintana, J. C. Saavedra-Aguilar, Microgram (DEA), 1986, 19, 153.
17. J. S. Gómez-Jeria, D. Morales-Lagos, J. I. Rodriguez-Gatica, J. C. Saavedra-Aguilar, Int. J. Quant. Chem., 1985, 28, 421.
18. J. S. Gómez-Jeria, D. R. Morales-Lagos, J. Pharm. Sci., 1984, 73, 1725.
19. J. S. Gómez-Jeria, D. Morales-Lagos, "The mode of binding of phenylalkylamines to the Serotonergic Receptor," in QSAR in design of Bioactive Drugs, M. Kuchar Ed., pp. 145, Prous, J.R., Barcelona, Spain, 1984.
20. J. S. Gómez-Jeria, Acta sud Amer. Quím., 1984, 4, 1.
21. F. Fiorino, A. Ciano, E. Magli, B. Severino, A. Corvino, E. Perissutti, F. Frecentese, P. Di Vaio, A. A. Izzo, R. Capasso, P. Massarelli, C. Nencini, I. Rossi, E. Kędzierska, J. Orzelska-Gòrka, A. Bielenica, V. Santagada, G. Caliendo, European Journal of Medicinal Chemistry, 2016, 110, 133.
22. The results presented here are obtained from what is now a routinary procedure. For this reason, we built a general model for the paper's structure. This model contains standard phrases for the presentation of the methods, calculations and results because they do not need to be rewritten repeatedly.
23. J. S. Gómez-Jeria, J. Comput. Methods Drug Des., 2017, 7, 17.
24. J. S. Gómez-Jeria, Canad. Chem. Trans., 2013, 1, 25.
25. J. S. Gómez-Jeria, Elements of Molecular Electronic Pharmacology (in Spanish), Ediciones Sokar, Santiago de Chile, 2013.
26. J. S. Gómez-Jeria, M. Ojeda-Vergara, J. Chil. Chem. Soc., 2003, 48, 119.
27. J. S. Gómez-Jeria, "Modeling the Drug-Receptor Interaction in Quantum Pharmacology," in Molecules in Physics, Chemistry, and Biology, J. Maruani Ed., vol. 4, pp. 215, Springer Netherlands, 1989.
28. J. S. Gómez-Jeria, Int. J. Quant. Chem., 1983, 23, 1969.
29. J. S. Gómez-Jeria, M. Flores-Catalán, Canad. Chem. Trans., 2013, 1, 215.
30. C. Barahona-Urbina, S. Nuñez-Gonzalez, J. S. Gómez-Jeria, J. Chil. Chem. Soc., 2012, 57, 1497.
31. A. Robles-Navarro, J. S. Gómez-Jeria, Der Pharma Chem., 2016, 8, 417.
32. G. A. Kpotin, G. S. Atohoun, U. A. Kuevi, A. Houngue-Kpota, J.-B. Mensah, J. S. Gómez-Jeria, J. Chem. Pharmac. Res., 2016, 8, 1019.
33. G. Kpotin, S. Y. G. Atohoun, U. A. Kuevi, A. Kpota-Hounguè, J.-B. Mensah, J. S. Gómez-Jeria, Der Pharm. Lett., 2016, 8, 215.
34. J. S. Gómez-Jeria, R. Salazar, Der Pharma Chem., 2016, 8, 1.
35. J. S. Gómez-Jeria, Í. Orellana, Der Pharma Chem., 2016, 8, 476.
36. J. S. Gómez-Jeria, C. Moreno-Rojas, Der Pharma Chem., 2016, 8, 475.
37. J. S. Gómez-Jeria, M. Matus-Perez, Der Pharma Chem., 2016, 8, 1.
38. J. S. Gómez-Jeria, P. Latorre-Castro, Der Pharma Chem., 2016, 8, 84.
39. J. S. Gómez-Jeria, G. A. Kpotin, Der Pharma Chem., 2016, 8, 213.
40. J. S. Gómez-Jeria, V. Gazzano, Der Pharma Chem., 2016, 8, 21.
41. J. S. Gómez-Jeria, R. Cornejo-Martínez, Der Pharma Chem., 2016, 8, 329.
42. J. S. Gómez-Jeria, P. Castro-Latorre, G. Kpotin, Der Pharma Chem., 2016, 8, 234.
43. J. S. Gómez-Jeria, H. R. Bravo, Der Pharma Chem., 2016, 8, 25.
44. J. S. Gómez-Jeria, S. Abarca-Martínez, Der Pharma Chem., 2016, 8, 507.
45. H. R. Bravo, B. E. Weiss-López, J. Valdebenito-Gamboa, J. S. Gómez-Jeria, Res. J. Pharmac. Biol. Chem. Sci., 2016, 7, 792.
46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, J.A., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G03 Rev. E.01, Gaussian, Pittsburgh, PA, USA, 2007.
47. J. S. Gómez-Jeria, D-Cent-QSAR: A program to generate Local Atomic Reactivity Indices from Gaussian $03 \log$ files. v. 1.0, Santiago, Chile, 2014.
48. J. S. Gómez-Jeria, J. Chil. Chem. Soc., 2009, 54, 482.
49. J. S. Gómez-Jeria, STERIC: A program for calculating the Orientational Parameters of the substituents. Santiago, Chile, 2015.
50. J. S. Gómez-Jeria, Res. J. Pharmac. Biol. Chem. Sci., 2016, 7, 2258.
51. J. S. Gómez-Jeria, Res. J. Pharmac. Biol. Chem. Sci., 2016, 7, 288.
52. Statsoft, Statistica v. 8.0, 2300 East 14 th St. Tulsa, OK 74104, USA, 1984-2007.
