# Chemistry Research Journal, 2016, 1(4):39-43

Available online <u>www.chemrj.org</u>



**Research Article** 

ISSN: 2455-8990 CODEN(USA): CRJHA5

# Investigating the Van Der Waals Equation "A" and "B" Parameters for Hydrocarbons (C<sub>1</sub> to C<sub>24</sub>) by Computational Modelling

## **Robson Fernandes de Farias**

Universidade Federal do Rio Grande do Norte, Cx. Postal 1664, 59078-970, Natal-RN, Brasil

**Abstract** In the present work, it is performed a computational chemistry study involving hydrocarbons, from C<sub>1</sub> (methane) to C<sub>24</sub> (tetracosane), in order to correlate *a* and *b* parameters of van der Waals equations with polarizability and molecular volume, as well another molecular parameters. The computations were performed usingSpartan'14 (version 1.1.8) by a Density Functional (DFT) method (B3LYP level, 6-31G\* basis set, 6-31G\* optimized geometry, in vacuum). Linear relationship between *a* andpolarizability, as well as *b* and volume, are observed. The energies of frontier molecular orbital ( $\epsilon$ HOMO,  $\epsilon$ LUMO), energy band gap ( $\epsilon$ LUMO- $\epsilon$ HOMO), electronegativity ( $\chi$ ), chemical potential ( $\mu$ ), global hardness ( $\eta$ ), global softness (*S*), and global electrophilicity index ( $\omega$ ) were calculated. It is verified that the values of energy gap, and, mainly,  $\eta$ , *S* and  $\omega$  (this last one, mainly) suffers very small variations or no variations at all, to higher hydrocarbons. So, as the number of carbons increases, the parameters that can be related with attractive and repulsive forces (and related, of course, with *a* and *b* values, both related, in a last reasoning, with the higher or lower deformability of the electron clouds), tends to a "stabilization", making the linear relationship no longer so pronounced.

Keywords Hydrocarbons; Density functional; van der Waals equation; Polarizability

#### Introduction

The van der Waals equation it is one of the most employed to describe and predict the behaviour of gases when the ideal gas premises are not present in a given system:

 $(\mathbf{P} + a/\mathbf{V}^2) (\mathbf{V} - b) = \mathbf{n}\mathbf{R}\mathbf{T}$ 

In this equation, coefficients a and b are related with a correction for pressure and volume, respectively. In a broad sense, a is related with the intermolecular attractive forces, whereas b is related with the intermolecular repulsive forces, depending on effective molecular volume.

The van der Waals coefficients a and b are empirically obtained, or can be estimated by using Lennar-Jones parameters, for example [1].

Since to obtain a and b experimental values, specific experimental apparatus and skills (not available everywhere) are required, chemical computations can provide a relatively simple and easy way to obtain reliable values for such parameters.

In the present work, it is performed a computational chemistry study involving hydrocarbons, from  $C_1$ (methane) to  $C_{24}$  (tetracosane), in order to correlate the *a* and *b* parameters of van der Waals equations with polarizability and molecular volume, as well another molecular parameters.

### Methods

The computations were performed usingSpartan'14 (version 1.1.8) [2] by a Density Functional (DFT) method (B3LYP level, 6-31G\* basis set, 6-31G\* optimized geometry, in vacuum).



The experimental a and b values were obtained by applying the experimental  $T_c$  (critical temperature) and  $P_c$  (critical pressure) experimental values [3] to the equations: $a = 27R^2T_c^2/64P_c$ ;  $b = RT_c/8P_c$ , where R is the gas constant.

#### **Results and Discussion**

The experimental a and b values, as well as the calculated polarizabilities and volumes to hydrocarbons from C<sub>1</sub> (methane) to C<sub>24</sub> (tetracosane) are summarized in Table 1. In Figure 1, a experimental values are plotted as function of the calculated polarizabilities. In Figure 2, b experimental values are plotted as function of the calculated volumes (in cubic Angstrons).

**Table 1:** Experimental *a* and*b*, and theoretical palarizability and volume values.

| Formula        | name        | а                                       | b        | Polarizability | Volume/A <sup>3</sup> |
|----------------|-------------|-----------------------------------------|----------|----------------|-----------------------|
|                |             | (barL <sup>2</sup> /mol <sup>2</sup> )* | (L/mol)* |                |                       |
| $CH_4$         | methane     | 2.30                                    | 0.0434   | 40.83          | 33.18                 |
| $C_2H_6$       | ethane      | 5.58                                    | 0.0651   | 42.73          | 51.79                 |
| $C_3H_8$       | propane     | 9.39                                    | 0.0905   | 44.38          | 70.22                 |
| $C_4H_{10}$    | butane      | 13.89                                   | 0.1164   | 45.93          | 88.67                 |
| $C_{5}H_{12}$  | pentane     | 19.09                                   | 0.1449   | 47.47          | 107.11                |
| $C_{6}H_{14}$  | hexane      | 24.84                                   | 0.1744   | 49.02          | 125.56                |
| $C_{7}H_{16}$  | heptane     | 31.06                                   | 0.2050   | 50.55          | 144.01                |
| $C_8H_{18}$    | octane      | 37.88                                   | 0.2374   | 52.07          | 162.45                |
| $C_9H_{20}$    | nonane      | 45.02                                   | 0.2698   | 53.59          | 180.89                |
| $C_{10}H_{22}$ | decane      | 52.73                                   | 0.3042   | 55.10          | 199.35                |
| $C_{11}H_{24}$ | undecane    | 60.14                                   | 0.3354   | 56.62          | 217.79                |
| $C_{12}H_{26}$ | dodecane    | 69.37                                   | 0.3757   | 58.12          | 236.24                |
| $C_{13}H_{28}$ | tridecane   | 77.09                                   | 0.4176   | 59.63          | 254.68                |
| $C_{14}H_{30}$ | tetradecane | 89.20                                   | 0.4587   | 61.14          | 273.13                |
| $C_{15}H_{32}$ | pentadecane | 98.77                                   | 0.4972   | 62.64          | 291.58                |
| $C_{16}H_{34}$ | haxadecane  | 108.88                                  | 0.5367   | 64.14          | 310.03                |
| $C_{17}H_{36}$ | heptadecane | 117.88                                  | 0.5708   | 65.64          | 328.48                |
| $C_{18}H_{38}$ | octadecane  | 126.14                                  | 0.6018   | 67.14          | 346.92                |
| $C_{19}H_{40}$ | nonadecane  | 143.30                                  | 0.6764   | 68.64          | 365.37                |
| $C_{20}H_{42}$ | eicosane    | 160.75                                  | 0.7459   | 70.15          | 383.82                |
| $C_{21}H_{44}$ | heneicosane | 171.37                                  | 0.7850   | 71.65          | 402.27                |
| $C_{22}H_{46}$ | docosane    | 183.83                                  | 0.8335   | 73.14          | 420.71                |
| $C_{23}H_{48}$ | tricosane   | 197.82                                  | 0.8924   | 74.64          | 439.16                |
| $C_{24}H_{50}$ | tetracosane | 214.52                                  | 0.9556   | 76.14          | 457.60                |



Figure 1: "a" as function of polarizability for hydrocarbons ( $C_1$  to  $C_{24}$ ). Linear correlation coefficient = 0.983.



Figure 2: "b" as function of volume (cubic Angstrons for hydrocarbons ( $C_1$  to  $C_{24}$ ). Linear correlation coefficient = 0.9920.

As can be verified, in both curves, linear relationships are obtained. Of course, if in the abscissa axis, instead of polarizabilities or volumes are employed the number of carbons or the molar masses, linear relationships are also obtained. However, parameters such as number of carbons or molar mass are only "apparently" related with *a* and *b* values, and such linear relationships are observed only due to the fact that we are dealing with linear hydrocarbons. If the number of carbons are increased (in a branch hydrocarbon for example) but the polarizability it is not, a linear relationship it is not observed, any more.

In order to illustrate such fact, the partition coefficient (P), and the standard entropy (S<sup>o</sup>) were also calculated and are summarized in Table 2. Both parameters exhibits linear relationships with a and b values, but such fact is only consequence of the linear nature of the studied hydrocarbons. So, in order to obtain reliable relationships and equations, it is necessary to employ the parameters "really" related with a and b.

In order to make a most profound discussion, the energies of frontier molecular orbital  $\epsilon$ HOMO and  $\epsilon$ LUMO (Table 2), energy band gap ( $\epsilon$ LUMO- $\epsilon$ HOMO), electro negativity ( $\chi$ ), chemical potential ( $\mu$ ), global hardness ( $\eta$ ), global softness (S), and global electrophilicity index ( $\omega$ ) were calculated (Table 3). This last parameters were calculated as follows:  $\chi = -1/2$  ( $\epsilon$ LUMO+ $\epsilon$ HOMO);  $\mu = -\chi$ ;  $\eta = (\epsilon$ LUMO- $\epsilon$ HOMO)/2;  $\omega = -\mu^2/2\eta$  and  $S = 1/2\eta$  [4-7].

As can be verified from Table 3 data, as the number of carbons increases, the values of energy gap, and, mainly,  $\eta$ , *S* and  $\omega$  (this last one, mainly) suffers very small variations or not variations at all. So, as the number of carbons increases, the parameters that can be related with attractive and repulsive forces (and related, of course, with *a* and *b* values, both parameters related, in a last reasoning, with the higher or lower deformability of the electron clouds), tends to a "stabilization", making the linear relationship no longer so pronounced.

| <b>Table 2:</b> Theoretical log P, S°, $E_{HOMO}$ and $E_{LUMO}$ data to hydrocarbons from C <sub>1</sub> to C <sub>24</sub> . |             |       |          |                       |                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------|----------|-----------------------|-----------------------|--|--|
| Formula                                                                                                                        | name        | log P | S° J/mol | ε <sub>HOMO</sub> /eV | ε <sub>LUMO</sub> /eV |  |  |
| $CH_4$                                                                                                                         | methane     | 1.09  | 186.09   | -10.59                | 3.21                  |  |  |
| $C_2H_6$                                                                                                                       | ethane      | 1.33  | 227.45   | -9.25                 | 2.85                  |  |  |
| $C_3H_8$                                                                                                                       | propane     | 1.75  | 267.22   | -8.83                 | 2.61                  |  |  |
| $C_4H_{10}$                                                                                                                    | butane      | 2.17  | 295.62   | -8.63                 | 2.58                  |  |  |
| $C_{5}H_{12}$                                                                                                                  | pentane     | 2.58  | 318.67   | -8.46                 | 2.55                  |  |  |
| $C_{6}H_{14}$                                                                                                                  | hexane      | 3.00  | 341.42   | -8.28                 | 2.52                  |  |  |
| $C_{7}H_{16}$                                                                                                                  | heptane     | 3.42  | 363.51   | -8.15                 | 2.50                  |  |  |
| $C_8H_{18}$                                                                                                                    | octane      | 3.84  | 384.82   | -8.05                 | 2.49                  |  |  |
| $C_9H_{20}$                                                                                                                    | nonane      | 4.25  | 405.13   | -7.97                 | 2.47                  |  |  |
| $C_{10}H_{22}$                                                                                                                 | decane      | 4.67  | 425.49   | -7.90                 | 2.46                  |  |  |
| $C_{11}H_{24}$                                                                                                                 | undecane    | 5.09  | 445.02   | -7.85                 | 2.46                  |  |  |
| $C_{12}H_{26}$                                                                                                                 | dodecane    | 5.51  | 463.62   | -7.80                 | 2.45                  |  |  |
| $C_{13}H_{28}$                                                                                                                 | tridecane   | 5.92  | 482.35   | -7.76                 | 2.44                  |  |  |
| $C_{14}H_{30}$                                                                                                                 | tetradecane | 6.34  | 501.13   | -7.73                 | 2.44                  |  |  |
| $C_{15}H_{32}$                                                                                                                 | pentadecane | 6.76  | 519.17   | -7.70                 | 2.44                  |  |  |
| $C_{16}H_{34}$                                                                                                                 | haxadecane  | 7.18  | 537.46   | -7.68                 | 2.43                  |  |  |

As an illustrative example, the *a* values as function of  $\eta$  are shown in Figure 3. **Table 2:** Theoretical log P. S<sup>o</sup> Evolution of  $\eta$  are shown in Figure 3.



| $C_{17}H_{36}$ | heptadecane | 7.59  | 555.80 | -7.66 | 2.43 |
|----------------|-------------|-------|--------|-------|------|
| $C_{18}H_{38}$ | octadecane  | 8.01  | 573.54 | -7.64 | 2.43 |
| $C_{19}H_{40}$ | nonadecane  | 8.43  | 591.46 | -7.63 | 2.43 |
| $C_{20}H_{42}$ | eicosane    | 8.84  | 609.45 | -7.61 | 2.42 |
| $C_{21}H_{44}$ | heneicosane | 9.26  | 626.93 | -7.60 | 2.42 |
| $C_{22}H_{46}$ | docosane    | 9.68  | 644.21 | -7.59 | 2.42 |
| $C_{23}H_{48}$ | tricosane   | 10.10 | 661.66 | -7.58 | 2.42 |
| $C_{24}H_{50}$ | tetracosane | 10.51 | 678.83 | -7.57 | 2.42 |

**Table 3:** Energy band gap ( $\epsilon$ LUMO- $\epsilon$ HOMO), electro negativity ( $\chi$ ), chemical potential ( $\mu$ ), global hardness ( $\eta$ ), global softness (S), and global electrophilicity index ( $\omega$ ).

| Formula        | name        | Energy | band | χ    | μ     | η    | ω    | S    |
|----------------|-------------|--------|------|------|-------|------|------|------|
|                |             | gap/eV |      |      |       | •    |      |      |
| $CH_4$         | methane     | 13.80  |      | 3.69 | -3.69 | 6.90 | 0.99 | 0.07 |
| $C_2H_6$       | ethane      | 12.10  |      | 3.20 | -3.20 | 6.05 | 0.85 | 0.08 |
| $C_3H_8$       | propane     | 11.44  |      | 3.11 | -3.11 | 5.72 | 0.85 | 0.09 |
| $C_4H_{10}$    | butane      | 11.21  |      | 3.03 | -3.03 | 5.61 | 0.82 | 0.09 |
| $C_{5}H_{12}$  | pentane     | 11.01  |      | 2.96 | -2.96 | 5.51 | 0.79 | 0.09 |
| $C_{6}H_{14}$  | hexane      | 10.80  |      | 2.88 | -2.88 | 5.40 | 0.77 | 0.09 |
| $C_{7}H_{16}$  | heptane     | 10.65  |      | 2.83 | -2.83 | 5.33 | 0.75 | 0.09 |
| $C_8H_{18}$    | octane      | 10.54  |      | 2.78 | -2.78 | 5.27 | 0.73 | 0.09 |
| $C_9H_{20}$    | nonane      | 10.44  |      | 2.75 | -2.75 | 5.22 | 0.72 | 0.10 |
| $C_{10}H_{22}$ | decane      | 10.36  |      | 2.72 | -2.72 | 5.18 | 0.71 | 0.10 |
| $C_{11}H_{24}$ | undecane    | 10.31  |      | 2.70 | -2.70 | 5.16 | 0.70 | 0.10 |
| $C_{12}H_{26}$ | dodecane    | 10.25  |      | 2.68 | -2.68 | 5.13 | 0.70 | 0.10 |
| $C_{13}H_{28}$ | tridecane   | 10.20  |      | 2.66 | -2.66 | 5.10 | 0.69 | 0.10 |
| $C_{14}H_{30}$ | tetradecane | 10.17  |      | 2.65 | -2.65 | 5.09 | 0.69 | 0.10 |
| $C_{15}H_{32}$ | pentadecane | 10.14  |      | 2.63 | -2.63 | 5.07 | 0.68 | 0.10 |
| $C_{16}H_{34}$ | haxadecane  | 10.11  |      | 2.63 | -2.63 | 5.06 | 0.68 | 0.10 |
| $C_{17}H_{36}$ | heptadecane | 10.09  |      | 2.62 | -2.62 | 5.05 | 0.68 | 0.10 |
| $C_{18}H_{38}$ | octadecane  | 10.07  |      | 2.61 | -2.61 | 5.04 | 0.67 | 0.10 |
| $C_{19}H_{40}$ | nonadecane  | 10.06  |      | 2.60 | -2.60 | 5.03 | 0.67 | 0.10 |
| $C_{20}H_{42}$ | eicosane    | 10.03  |      | 2.60 | -2.60 | 5.02 | 0.67 | 0.10 |
| $C_{21}H_{44}$ | heneicosane | 10.02  |      | 2.59 | -2.59 | 5.01 | 0.67 | 0.10 |
| $C_{22}H_{46}$ | docosane    | 10.01  |      | 2.59 | -2.59 | 5.00 | 0.67 | 0.10 |
| $C_{23}H_{48}$ | tricosane   | 10.00  |      | 2.58 | -2.58 | 5.00 | 0.67 | 0.10 |
| $C_{24}H_{50}$ | tetracosane | 9.99   |      | 2.58 | -2.58 | 4.99 | 0.66 | 0.10 |



Figure 3: "a" as function of global hardness  $(\eta)$ 

#### References

- 1. A. Cooksy, Physical Chemistry, Pearson, New York, 2014.
- 2. Wavefunction Inc., Irvine, California, USA, 2014.
- 3. CRC Handbook of chemistry and physics, 87<sup>th</sup> Edition, Taylor and Francis, Boca Raton, 2007.
- 4. R.G., Pearson, Absolute Electro Negativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54 (1989) 1423-1430.
- 5. R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity Index. Journal of the American Chemical Society, 121 (1999) 1922-1924.
- 6. P.K. Chattaraj, S. Giri, Stability, Reactivity, and Aromaticity of Compounds of a Multivalent Super Atom. Journal of Physical Chemistry A, 111 (2007) 11116-11121.
- 7. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, Electrophilicity-Based Charge Transfer Descriptor. Journal of Physical Chemistry A, 111 (2007) 1358-1361.

