Chemistry Research Journal, 2016, 1(1):1-7

Available online <u>www.chemrj.org</u>

Review Article

ISSN: 2455-8990 CODEN(USA): CRJHA5

Synthesis and Characterization of Superparamagnetic (Fe₃O₄) Magnetite Nanoparticles Coated with Oleic Acid

Nabil Abdullah Noman Alkadasi

Department of Chemistry, Rada'a, Albaydha University, Yemen Department of Civil and Mechanical Engineering, Thamar University, Yemen

Abstract Fe_3O_4 nanoparticles have been successfully synthesized by modification of the preparation method of Fe_3O_4 nano-particles, which were prepared from Iron (III) Chloride hexahydrate $FeCl_3.6H_2O$, Ferrous Chloride $FeCl_2.4H_2O$ and Ammonia Solution (NH₄OH), oleic acid. In this study, a new preparation of Fe_3O_4 nanoparticles and Fe_3O_4 nanoparticles coated with oleic acid were reported. The characterization of Fe_3O_4 nanoparticle and Fe_3O_4 nanoparticles coated with oleic acid is done by TEM, XRD and UV spectroscopy.

Keywords Fe3O₄, Nanoparticle and characterization.

Introduction

Magnetic iron oxide nanoparticles and their dispersion in various media have been scientific and technologic [1-3]. Owing to their unique properties in a magnetic field they are actively used in various industrial and medical application. The magnetic fluids based on magnetite and mineral oils or organic solvents are conventionally synthesized by alkaline hydrolysis of ferrous and ferric salts. The magnetite obtained is stabilized by surfactants.

Oleic acid is often used as a surfactant to form a waterproof shell around the magnetite particles since oleic acid has higher affinity to the surface of superfine magnetite compared to other surfactants .The treatment of magnetite by oleic acid is the most complex and important stage of the magnetic magnetic fluid preparation [4-8].

In conventional techniques, to prepare magnetic fluids, excess base (NH₄OH) is used to form magnetite precipitates and then oleic acid is added as surfactant by forming oleate directly after the complete crystallization of the magnetite precipitate. The main procedure begins with the co-precipitation of Fe (II) and Fe (III) ions with addition of excess concentrated NH₄OH. The sediment is then isolated by magnetic decantation and treated with oleic acid at heating. In finally an organic carrier liquid is added under intensive stirring. To obtain concentrated magnetic fluids, treated procedure such as phase separation and extraction of excess surfactant and solvent are often needed. In this paper, Fe₃O₄ nanoparticles are perpetrated in higher concentrated hydrophobic magnetite by adjusting the amount of ammonium hydroxide and oleic acid, and time of oleic acid addition. The key to the success of making such a hydrophobic magnetite is to add an appropriate amount of ammonium hydroxide and oleic acid. Finally solution has remained neutral and the magnetite precipitated. The oleic acid, as a reactant, was added immediately after the formation of magnetite crystal, simultaneously with the crystal growth. We posited that the oleic acid will efficiently coat the Fe₃O₄ crystal at the growth stage and will be create a highly concentrated hydrophobic magnetite precipitated [9-13].

We characterized the magnetite precipitated in terms of its morphology ,particle size , magnetite properties , structure , and hydrophobicity /hyrophilicity by transmission electron microscopy (TEM), ultraviolet (U.V) and powder X- ray diffraction) XRD .

Experimental Work

Materials

Iron (III) Chloride hexahydrate FeCl₃.6H₂O, 99.0 %, Ferrous Chloride FeCl₂.4H₂O, 98.0 %, Ammonia Solution (NH₄OH) and oleic acid were purchased from Sinopharm chemical reagent Co, Ltd, China. Physical parameters of Iron (III) Chloride hexahydrate FeCl₃.6H₂O, 99.0 %, Ferrous Chloride FeCl₂.4H₂O, 98.0 %, Ammonia Solution (NH₄OH), oleic acid and Hydrochloric acid (HCl) are reported in table 1, 2, 3, 4 and 5 respectively.

Molecular formula	Iron (III) Chloride hexahydrate FeCl ₃ .6H ₂ O , 99.0 $\%$
Appearance	Yellow- red crystal
Molecular weight	270.29
Company	Sinopharm chemical reagent Co, Ltd, China

Table 1: General Characteristics of Iron (III) Chloride hexahydrate FeCl₃.6H₂O

 Table 2: General Characteristics of Ferrous Chloride FeCl₂.4H₂O ,98.0%

Molecular formula	Ferrous Chloride FeCl ₂ .4H ₂ O, 98.0 %
Appearance	Green Crystall
Molecular weight	198.82
Company	Sinopharm chemical reagent Co, Ltd, China

Table 3: General Characteristics of Ammonia (NH₄OH)

Molecular formula	Ammonia (NH ₄ OH)
Appearance	liquid
Molecular weight	17.03
Concentration	25-28 %
Company	Sinopharm chemical reagent Co, Ltd, China

Table 4: General characteristics of oleic acid

Trade Name	Oleic Acid (C ₁₈ H ₃₄ O ₂) 99.9 %
Appearance	Liquid
Molecular weight	282.46
Density (20 °C g/m)	0.870-0.90
pH (250 g /l ,25 °C	3.0-5.0
Company	Sinopharm Chemical Reagent Co, Ltd, China

Table 5: General Characteristics of Hydrochloric acid (HCl)

Molecular formula	Hydrochloric Acid (HCl)		
Appearance	liquid		
Molecular weight	36.5		
Concentration	36-38 %		
Company	Sinopharm chemical reagent Co ,Ltd ,China		

Synthesis of oleic acid-coated magnetite

The magnetite was synthesized by modification method in the following procedure (14-19): 5.8 g FeCl₃.6H₂O and 2.2 g FeCl₂.4H₂O were dissolved in 200 ml deionized water under nitrogen gas with vigorous stirring at 90 °C for 30

minutes. 7.5 ml of 25 % NH₄OH was added to the solution. Then 4.9 mL oleic acid was added dropwise into the suspension. After 30 minutes, the upper solution became colorless and the tarlike black magnetite gel precipitated and was isolated by magnetic decantation. The magnetite was prepared by the same recipe except for omission of oleic acid. The black Magnetite gel precipitated was collected and washed with de-ionized water and pure ethanol three times or acetone to remove excess oleic acid. After drying, a black powder was obtained.

Figure 1: Solution of Fe₃O₄ Nanoparticles

Transmission Electron Microscope (TEM) Test

For TEM test, a small amount of sample was dissolved in 3 mL of deionized water in test tube and the solution was stirred by ultra-sonication. Then 10 μ L sample was transferred to clean Copper Grid and kept dried for the TEM test. The TEM micrographs of samples were observed by CM 12 Philips Transmission Electron Microscope.

Results and Discussion

The Fe₃O₄ nanoparticle was synthesized by heating to 90 °C of Fe₃O₄ and Fe₃O₄ nanoparticle coated oleic acid in powder form. Plates 1 to 13 (TEM) show the top-view TEM images of the Fe₃O₄ Nanoparticle and Fe₃O₄ nanoparticle coated oleic acid. X-ray diffraction spectra shows of Magnetite nanoparticles and Fe₃O₄ nanoparticle coated oleic acid (figure 2 & 3). UV spectra shows of Magnetite nanoparticles and Fe₃O₄ nanoparticle coated oleic acid respectively dispersed in ethanol (figure 4 & 5).

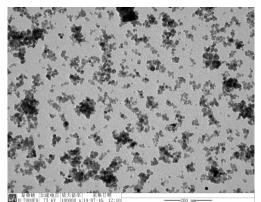
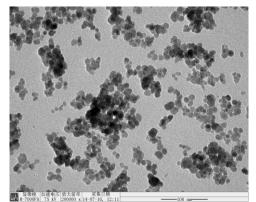


Plate 1: TEM of Fe₃O₄ nanoparticles



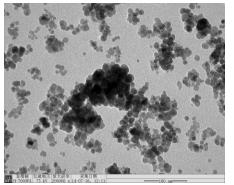
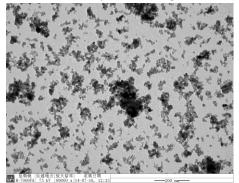



Plate 2: TEM of Fe₃O₄ nanoparticles

Plate 3: TEM of Fe₃O₄ nanoparticles

Plate 5: TEM of Fe₃O₄ nanoparticles

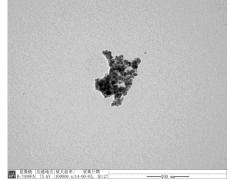


Plate 7: TEM of Fe₃O₄ nanoparticles

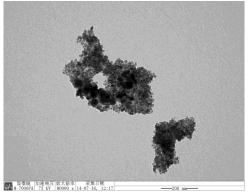


Plate 9: TEM of Oleic acid coating Fe₃O₄ nanoparticles Plate 10: TEM of Oleic acid coating Fe₃O₄ nanoparticles



Plate 4: TEM of Fe₃O₄ nanoparticles

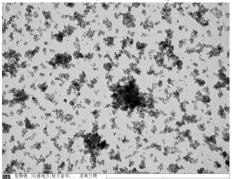


Plate 6: TEM of Fe₃O₄ nanoparticles

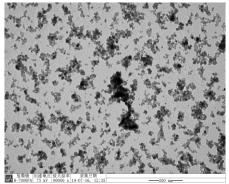
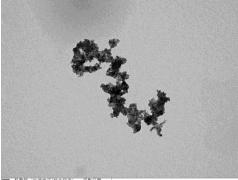



Plate 8: TEM of Fe₃O₄ nanoparticles

late 10: TEM of Oleic acid coating Fe₃O₄ nanoparticle

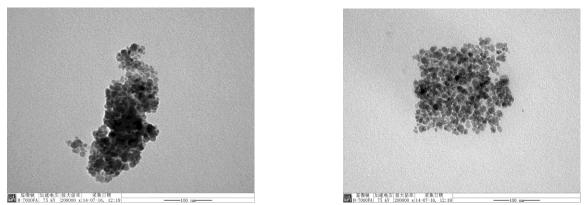


Plate 11: TEM of Oleic acid coating Fe₃O₄ nanoparticles Plate 12: TEM of Oleic acid coating Fe₃O₄ nanoparticles

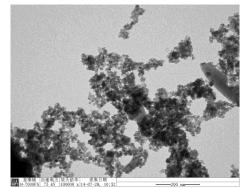


Plate 13. TEM of Oleic acid coating Fe₃O₄ nanoparticles

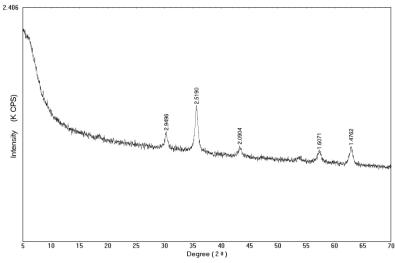
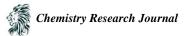



Figure 2: XRD Spectra for Fe₃O₄ Magnetite (Fe₃O₄) Nanoparticles

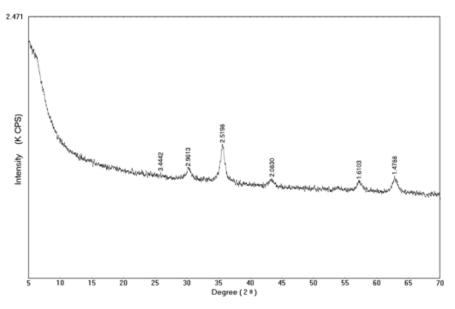


Figure 3: XRD Spectra for Oleic acid coating Magnetite (Fe₃O₄) nanoparticles

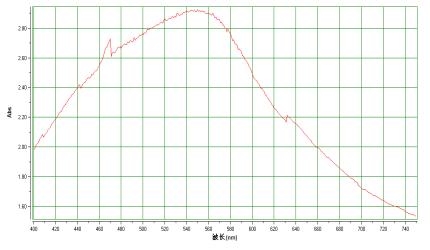


Figure 4: UV Spectra for Magnetite (Fe₃O₄) nanoparticles

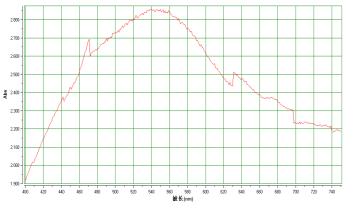



Figure 5: UV Spectra for Oleic acid coating Magnetite (Fe₃O₄) nanoparticles

Acknowledgements

This work was supported by UNESCO/People's Republic of China (Great wall) and Al-baida'a ,University , Republic of Yemen .

References

- 1. Alkadasi, N. A. N. (2014). Synthesis of Fe₃O₄ nano particles from Ironstone from the Republic of Yemen. *Oriental Journal of Chemistry*, *30*(3), 1173-1178.
- 2. Alkadasi, N. A. N. (2014). Oriental Journal of Chemistry, 30(3), 1179-1182.
- 3. Mihajlović, G., Xiong. P, & von Molnár. S. (2005). Appl. Phys. Lett. 87, 112502-1-3.
- Etier, M., Shvartsman, V. V., Gao, Y., Landers, J., Wende, H., & Lupascu, D. C. (2013). Magnetoelectric effect in (0–3) CoFe₂O₄-BaTiO₃ (20/80) composite ceramics prepared by the organosol route. *Ferroelectrics*, 448(1), 77-85.
- Maiti, R., & Chakraborty, M. (2008). Synthesis and characterization of molybdenum aluminide nanoparticles reinforced aluminium matrix composites. *Journal of Alloys and Compounds*, 458(1), 450-456.
- Riyanto .A, Listiawati .D, Suharyadi .E, Abraha .d. K. ProsidingPertemuanIlmiah XXVI HFI Jateng & DIY, Purworejo, 2012, 14 April, 203-207.
- Asuha, S., Wan, H. L., Zhao, S., Deligeer, W., Wu, H. Y., Song, L., & Tegus, O. (2012). Water-soluble, mesoporous Fe₃O₄: synthesis, characterization, and properties. *Ceramics International*, 38(8), 6579-6584.
- Zhou, X., Shi, Y., Ren, L., Bao, S., Han, Y., Wu, S., ... & Zhang, Q. (2012). Controllable synthesis, magnetic and biocompatible properties of Fe₃O₄ and α-Fe₂O₃ nanocrystals. *Journal of Solid State Chemistry*, 196, 138-144.
- 9. Wang, B., Wei, Q., & Qu, S. (2013). Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. *Int J Electrochem Sci*, *8*, 3786-3793.
- 10. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., & Li, M. (2007). Synthesis and characterization of biocompatible Fe₃O₄ nanoparticles. *Journal of Biomedical Materials Research Part A*, 80(2), 333-341.
- 11. Jiang, W., Yang, H. C., Yang, S. Y., Horng, H. E., Hung, J. C., Chen, Y. C., & Hong, C. Y. (2004). Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. *Journal of Magnetism and Magnetic Materials*, 283(2), 210-214.
- 12. Hu, P., Zhang, S., Wang, H., Pan, D. A., Tian, J., Tang, Z., & Volinsky, A. A. (2011). Heat treatment effects on Fe₃O₄ nanoparticles structure and magnetic properties prepared by carbothermal reduction. *Journal of Alloys and Compounds*, 509(5), 2316-2319.
- 13. Park, J. O., Rhee, K. Y., & Park, S. J. (2010). Silane treatment of Fe₃O₄ and its effect on the magnetic and wear properties of Fe₃O₄/epoxy nanocomposites. *Applied Surface Science*, 256(23), 6945-6950.
- 14. Rahman, O., Mohapatra, S. C., & Ahmad, S. (2012). Fe₃O₄ inverse spinal super paramagnetic nanoparticles. *Materials Chemistry and Physics*, *132*(1), 196-202.
- 15. Mukherjee, J., Ramkumar, J., Chandramouleeswaran, S., Shukla, R., & Tyagi, A. K. (2013). Sorption characteristics of nano manganese oxide: efficient sorbent for removal of metal ions from aqueous streams. *Journal of Radioanalytical and Nuclear Chemistry*, 297(1), 49-57.
- 16. Miyauchi, M., Simmons, T.J., Jianjun Miao, Gagner, J.E., Shriver, Z.H., Aich, U., Dordick, J.S., & Linhardt, R.J. (2011), ACS Appl. Mater. Int., 3, 1958–1964.
- 17. Wang, L. L., & Jiang, J. S. (2009). Preparation of Fe₃O₄ spherical nanoporous particles facilitated by polyethylene glycol 4000. *Nanoscale research letters*, *4*(12), 1439-1446.
- 18. Nowosielski, R., & Babilas, R. J. (2011). Achievements in Mater. Manuf. Eng., 48(2), 153-160.
- 19. Astuti, Claudia G., Noraida, & Ramadhani, M., Makara. (2013). J. Sci 17(2), 58-62.

