Chemistry Research Journal, 2017, 2(6):174-181

Available online <u>www.chemrj.org</u>

Research Article

ISSN: 2455-8990 CODEN(USA): CRJHA5

Assessment of Adverse Outcome of Vitamin B₁₂ Deficiency in Selected Adult Population Diagnosed with Varied Clinical Conditions

Junaid Mahmood Alam, Amna Salman, Sarah Sughra Asghar, Ishrat Sultana

Department of Clinical Biochemistry Lab services and Chemical Pathology, Liaquat National Hospital and Medical College. Karachi. Pakistan

Abstract Back ground: Vitamin B₁₂ deficiency strike all ages but infants and older population are more vulnerable. Persistent Vitamin B₁₂ deficiency leads to neurological impairment, disability, poor outcome of disease, premature birth or death, psychiatric illness, anemia, vascular occlusion, suppressed immune system, in addition to hindrance in bone marrow development. Aim: Present prospective observational study was undertaken to evaluate vitamin B_{12} levels, determination of underlying clinical condition that causes probable B₁₂ deficiency and symptoms/outcome associated with vitamin B_{12} deficiencies. *Materials and Methods:* It was a prospective observational study and performed during 1st January 2014 to 1st Dec 2016 with a total of 365 patients (males = 149, females = 216) that were confirmed cases of low vitamin B₁₂ levels (<200pg/ml). Patients were classified according to gender, age groups and vitamin B_{12} levels as per previously described methodology with three age-groups as > 16 years < 40, > 40 and < 60, > 60 and < 70 years. Patient's history, underlying clinical condition were carefully documented and analyzed as per earlier established methods. Haematological testing for Hemoglobin and MCV was performed on Sysmex analyzer. Serum folic acid and vitamin B₁₂ were assayed on Cobas e411 auto-immunoassay system-ECL technology (Roche Diagnostic, Basel), whereas creatinine and LDH were performed on Cobas 6000 c501 analyzer (Roche Diagnostics). Correlation between ages, gender, clinical conditions was analyzed by multiple linear regressions. Data was analyzed by grouping on the basis of age, gender and vitamin B_{12} levels. Statistical analyses were performed using the statistical package SPSS-version 15.0 (USA) and results are presented as the percentage. *Results:* Gender and age distribution were noted to be males (total n = 149)- Group >16 <40 yrs, n = 35, 23.48%, Group >40 <60 yrs, n = 47, 31.54% and elderly Group >60 <70 yrs, n = 67, 44.96% and for females (total n = 216); Group >16 <40 yrs, n = 49, 22.6%, Group >40 <60 yrs, n = 86, 39.81%, and elderly Group >60 <70 yrs, n = 81, 37.50%. Around 65.67% (n = 44) males patients and 81.48% (n = 66) female patients in elderly group of >60<70yrs showed B_{12} levels of < 150 pg/ml and deficiency was found to be prevalent in females than in male elderly patients. Impaired memory (n = 35, 42.15% in males, n = 61, 44.20% in females) was more frequent clinical finding followed by dyspepsia, ataxia, anemia, drowsiness, weakness, neuropsychiatric symptoms such as urinary or fecal incontinence, polyneuritis and paraesthsia. Conclusion: Current presented prospective observational study thus showed deficient vitamin B_{12} levels in many of the selected population, mostly elders and females, their underlying clinical condition that might have caused probable B₁₂ deficiency and symptoms/outcome associated with vitamin B_{12} deficiencies, such as dementia both in males and females followed by hypertension, diabetes, and general neuronal dysfunction.

Keywords Vitamin B₁₂, Deficiency, neuropsychiatric, hematologic, clinical conditions

Introduction

Vitamin B_{12} (B_{12} , Cbl, Cobalamine) is water soluble vitamin, essential for cell growth and several physiological and metabolic functions [1,2]. Some of the reasons or Vitamin B_{12} deficiencies are mal-absorption, inadequate intake, diet irregularities, drugs, radiation and numerous underlying co-morbid [1-6]. Adequate amount of Vitamin B_{12} is required and is necessary for DNA synthesis, erythropoiesis, folic acid metabolism, neurological developments [7-9]. It is documented that Vitamin B_{12} deficiency although strike all ages but infants and older population are more vulnerable [1,5,10,11]. In addition, vegetarian, vegans, bariatric surgery patients, GIT diseases and those with ileal resections were also at risk of developing severe B_{12} deficiencies [12, 13]. Persistent Vitamin B_{12} deficiency leads to neurological impairment, disability, poor outcome of disease, premature birth or death, psychiatric illness, anemia, vascular occlusion, suppressed immune system, in addition to hindrance in bone marrow development [5, 14-16]. Furthermore, some commonly reported and well documented clinical conditions associated with vitamin B_{12} deficiencies [17,19], glossitis, anorexia [18, 20], vascular manifestation [this Article 14], and adverse affect on infant growth and development [10, 22-25].

Thus the present prospective observational study was undertaken to evaluate vitamin B_{12} levels, determination of underlying clinical condition that causes probable B_{12} deficiency and symptoms/outcome associated with vitamin B_{12} deficiencies.

Materials and Methods

Patient's selection and research design

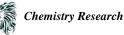
Present study is prospective observational and performed during 1st January 2014 to 1st Dec 2016 with a total of 365 patients (males = 149, females = 216) that were confirmed cases of low vitamin B_{12} levels (<200pg/ml). All patients were shown to posses definite vitamin B_{12} reporting and related lab investigations, diagnoses and follow ups, including the patients from both indoor and OPDs. Patients were classified according to gender, age groups and vitamin B_{12} levels as per previously described methodology [26]. Patient's ages ranged from 16 to 70 years in females and 21 to 70 years in males and finally categorized in three age-groups as > 16 years < 40, > 40 and < 60, > 60 and < 70 years. Patient's history, underlying clinical condition that might induce vitamin B_{12} deficiency and unfavorable outcome due to deficiency were carefully documented and analyzed as per earlier established methods [4, 10, 26].

Vitamin B₁₂ and related Laboratory investigations:

Vitamin B_{12} analysis and Serum folate, hemoglobin measurements were referred by physicians and practitioners for routine diagnostic check-ups to the laboratory. Blood samples from patients were routinely collected after an overnight fasting. Haematological testing for Hemoglobin and MCV was performed on Sysmex analyzer. Serum folic acid and vitamin B_{12} were assayed on Cobas e411 auto-immunoassay system-ECL technology (Roche Diagnostic, Basel), whereas creatinine and LDH were performed on Cobas 6000 c501 analyzer (Roche Diagnostics). The total imprecision of the B_{12} immunoassay is 3.7% Coefficient of Variation and within precision was 3.0%, and for folic acid coefficient variation was 5.0% and within precision 3.0%. Anaemia was defined as a haemoglobin concentration <14.0 g/dL in men and <12.3 g/dL in females, respectively. Low serum levels of folic acid and vitamin B_{12} were established at < 2.7 (normal 2.7-16.1 ng/ml) and < 220 (normal 220-925 pg/ml), respectively, where $B_{12} < 150$ pg/ml is considered as markedly deficient and between 150-220 pg/ml as moderately deficient. Correlation between ages, gender, clinical conditions was analyzed by multiple linear regressions. Data was analyzed by grouping on the basis of age, gender and vitamin B_{12} levels. Statistical analyses were performed using the statistical package SPSS-version 15.0 (USA) and results are presented as the percentage.

Results

We conducted a prospective observational study was carried out with a total number of 365 patients (males = 149, females = 216) with confirmed reports of low vitamin B_{12} levels (<200pg/ml) during the period 1st Dec 2014 to 1st Dec 2016. These patients were included as per definite vitamin B_{12} reporting and related lab investigations, diagnoses and follow ups. Results are summarized in Tables 1 to 5. Patient's ages ranged from 16 to 70 years in



females and 21 to 70 years in males and categorized in three age-groups as > 16 years < 40, > 40 and < 60, > 60 and < 70 years. Related lab tests done were Hb, MCV, Creatinine, vitamin B₁₂, Folic acid, LDH. Data was analyzed by grouping on the basis of age, gender and vitamin B₁₂ level. Gender and age distribution were noted to be males (total n = 149)- Group >16 <40 yrs, n = 35, 23.48%, Group >40 <60 yrs, n = 47, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, 31.54% and elderly Group >60 <70 yrs, n = 149, n = 14= 67, 44.96% and for females (total n = 216); Group >16 <40 yrs, n = 49, 22.6\%, Group >40 <60 yrs, n = 86, 39.81%, and elderly Group >60 <70 yrs, n = 81, 37.50% (table 1 and 2). The study showed mean B_{12} level in vitamin B_{12} deficient individuals as 118.40 ± 42 pg/ml. Mean concentrations of other parameters are MCV = 85 fl (normal range 76-96fl), creatinine = 1.12 mg/dl (0.5-1.5 mg/dl), folic acid 5.15 ng/ml (2.72-16.1 ng/ml), LDH = 354 U/L (< 480 U/L), bilirubin = 0.45 mg/dl (< 1.0 mg/dl). Around 65.67% (n = 44) males patients and 81.48% (n = 66) female patients in elderly group of >60<70 yrs showed B₁₂ levels of < 150 pg/ml and subsequently deficiency was found to be prevalent in females than in male elderly patients (Table 3). Impaired memory (n = 35, 42.15% in males, n = 61, 44.20% in females) was more frequent clinical finding (Table 4), followed by dyspepsia, ataxia, anemia, drowsiness, weakness. Other clinical conditions were neuropsychiatric symptoms such as urinary or fecal incontinence, polyneuritis, paraesthsia (Table 4). Mean Hb was low (males = 12.48 gm/dl; range 13-18 gm/dl; females = 8.45 gm/dl; range 11.5-16.4 gm/dl), mean folic acid, LDH and bilirubin levels were normal. Various clinical conditions were also found co-existing with B₁₂ deficiency or outcome of prevailing insufficiency. More notable were dementia both in males (n = 23, 27.71%) and females (n = 45, 32.60%) followed by hypertension, diabetes, general neuronal dysfunction (Table 5).

Gender	Number of	patients Per	rcentage		
Males	149	40.	82%		
Females	216	59.	17%		
Table 2: Age wise $(< 60 \text{ yrs}, > 60 \text{ yrs})$) yrs) distribu	tion of vitamin	B ₁₂ deficier	nt categories $(n = 3)$	65)
Gender	Numbe	r of patients	Percentag	e %	
Males $= 149$					
Group >16 <40	yrs 35		23.48		
Group >40 <60	yrs 47		31.54		
Group >60 <70	yrs 67		44.96		
Females = 216					
Group >16 <40	yrs 49		22.6		
Group >40 <60	yrs 86		39.81		
Group >60 <70	yrs 81		37.50		
le 3: Distrubution of Vitamin B_{12} de	ficiency in ma	ile and female p	patients (n =	= 365) according to	B ₁₂
Gender and age-groups & subgro	oups Pa	Patients in Vitamin B ₁₂ deficiencies categories			
	Vitam	Vitamin B ₁₂ 150-220 pg/ml		Vitamin B ₁₂ < 150 pg/m	
Males = 149	n	%	n	%	
Group >16 <40 yrs (N = 35)	25	71.42	10	28.57	
Group >40 <60 yrs (N = 47)	18	38.29	29	61.70	
Group >60 <70 yrs (N = 67)	23	34.32	44	65.67	
			83		
Females = 216					
Group >16 <40 yrs (N = 49)	29	59.18	20	40.81	
Group >40 <60 yrs (N = 86)	34	39.53	52	60.46	
Group >60 <70 yrs (N = 81)	15	18.51	66	81.48	
			13	0	

Table 1: Gender wise distribution of Vitamin B_{12} deficient group (n = 365)

n/N = number of patients, % according to B_{12} deficiently categories within age-groups

Clinical Conditions	Cumulative Number of patients in all age groups >16 to < 40						
	yrs, > 40 to < 60 yrs and > 60 to < 70 yrs						
	Males (1	Males (n = 83)		s(n = 138)			
	n	%	n	%			
Paraesthsia	22	26.50	46	33.33			
Dyspepsia	26	31.32	52	37.68			
Diarrhea	11	13.25	20	14.49			
Vomiting	05	6.02	11	7.97			
Impaired memory	35	42.16	61	44.20			
Ataxia	21	25.30	66	47.82			
Polyneuritis	18	21.68	57	41.30			
Drowsiness	17	20.48	61	44.20			
Excretion Inconsistencies	11	13.25	21	15.21			
Weakness	19	22.89	48	34.78			
Anemia	21	25.30	49	35.50			

Table 4: Various clinical manifestations in Vitamin B_{12} markedly deficient (< 150 pg/ml) individuals (males = 83,</th>females = 138). Cumulative number of patients were also depicted as percent onset of respective clinical conditions.(Note: Multiple clinical condition existed in pateints)

Table 5: Occurrence of different diseases in Vitamin B_{12} markedly deficient (<150 pg/ml) individuals (Males = 83,</th>females = 138). Cumulative number of patients were also depicted as percent onset of respective clinical conditions.(Note: Multiple clinical condition existed in patients)

Clinical Conditions	Cumulative Number of patients in all age groups >16 to < 40 yrs, > 40 to < 60 yrs and > 60 to < 70 yrs				
	Males (n = 83)		Femal	Females (n = 138)	
	n	%	n	%	
Dementia	23	27.71	45	32.60	
Ischemic heart disease	11	13.25	10	7.24	
Stroke	14	16.86	09	6.52	
Hypertension	18	21.68	23	16.66	
Diabetes	17	20.48	16	11.59	
Parkinson's	09	10.84	12	8.69	
General neurological disorders	15	18.07	29	21.01	

Discussion

During past few years, it was well documented, after several studies executed on cohorts, prospective, linear, multicentered, that diagnoses and management of sub-clinical and clinical vitamin B_{12} deficiency is somewhat difficult to diagnose and intricate to manage due to multi-faced reasons and higher prevalence, respectively [1, 17-28]. Generally clinical studies carried out in last two decades in groups of both adults and elderly population of vitamin B_{12} deficient individuals and reported several clinical conditions and diseases that are associated with vitamin B_{12} deficiency [17-25]. In this regard, hematological disorder is noted to be primary cause of vitamin B_{12} deficiency and its related sequelae are often severe and irreversible in the children, the majority of which, with clinical deficiency, may manifest into megaloblastic anemia [10]. In various studies reported earlier, 56% to 77% of patients had signs of macrocytosis or anemia [19, 29-32] with overt vitamin B_{12} -deficiency.

In our presented study, we have found that vitamin B_{12} deficiency and its prevalence is directly proportional to age; which means elderly the patients was, lower would be its Vitamin B_{12} levels. In addition females were found to be more B_{12} deficient than males and more in the category of less than 150 pg/ml. In two previous studies by our group [4, 26], similar pattern of clinical manifestations were noted in B_{12} deficient selected population. Thorough survey of literature showed that none of the individual symptom or in some cases cluster of symptoms have been linked to deficiency of vitamin B_{12} (10), however it is evident that more persistent B_{12} deficiency usually appears nearly at about 60 years of age and remains asymptomatic for many years [10, 33].

It was notified that Vitamin B_{12} deficiency if remains untreated might induce severe repercussions such as causing vascular diseases inclusive of stroke, myocardial infarction and deep vein thrombosis [34, 35]. Furthermore, combined deficiency of vitamin B_{12} and iron is noted in individuals aged 60 and 70, which is in agreement with our study as well [1, 34-37]. Numerous previous and recent studies notified several neurological disorders that results from Vitamin B_{12} deficiency such as paresthesias (with or without objective signs of neuropathy), weakness, motor disturbances (including gait abnormalities), vision loss, and a wide range of cognitive and behavioral changes (e.g., dementia, hallucinations, psychosis, paranoia, depression, violent behavior, and personality changes) [6, 10, 26, 38]. Furthermore, tingling of the hands and feet is perhaps the most common neurologic complaint reported [10, 17, 19, 26, 39]. It has been suggested that patients with underlying B_{12} deficiency may also develops neuropsychiatric sequalae such as combined sclerosis of spinal cord (classic finding), polyneuritis, ataxia and babinski's phenomenon (which is a frequent finding) and cerebral syndromes, urinary and fecal incontinence (rare) [5, 10]. Consequently, gastro-intestinal manifestations such as anorexia, flatulence, diarrhea, and constipation may also precede Vitamin B_{12} deficiency [10, 18, 20, 26, 39, 40].

In past two decades, a number of comparative and analytical studies stated certain other nutritional or physiological factors that may facilitate or corroborate B_{12} deficiency and its related conditions. Development of vascular complications, co-morbid with elevated levels of homocysteine (Hcy) was reported as few of those clinical findings that might influence B_{12} and folic acid deficiency [10, 21, 26, 41]. Moreover, hyperhomocysteinemia as stated, increases the risk of developing a vascular occlusion [1, 21, 42], consequently facilitating the risk of coronary heart disease and ischemic stroke [41-44]. Additionally, vitamin B_{12} deficiencies among infants and young children might proceed to induce clinical manifestations at a very later stage of life, which are mostly seen in older patients of B_{12} deficiency, such as hematologic, neurologic, gastrointestinal, and cardiovascular consequences [22-25, 45, 46]. Subsequently, low or marginal vitamin B_{12} status in pregnant women increases the risk of neural tube birth defects as well [47].

Conclusion

Current presented prospective observational study thus showed deficient vitamin B_{12} levels in many of the selected population, mostly elders and females, their underlying clinical condition that might have caused probable B_{12} deficiency and symptoms/outcome associated with vitamin B_{12} deficiencies.

Acknowledgements

Authors wish to thank Center for Disease Control and Prevention (CDC), Atlanta, GA, USA for providing relevant data, documents and references for present study.

References

- Hannibal, L., Lysne., V, Bjørke-Monsem, L.M., Behringer., S, .Grünert., .G., Koetter., U.S., Jacobsen, W.J., Blom., H.J. (2016). Biomarkers and Algorithms for the Diagnosis of Vitamin B₁₂ Deficiency. Front. Mol. Biosci. 3 (2): 1-16
- Bjørke-Monsen, A,L and Ueland, PM. (2011). Cobalamin status in children. J Inherit Metab Dis. 34(1):111-9.

- Ganjehei L. Massumi A, Razavi M, Wilson JM. Orthostatic hypotension as a manifestation of vitamin B₁₂ deficiency. *Tex Heart Inst J.* 2012;39:722-3.
- Baig, J.A., Alam, J.M., Kazmi, T., Waseem, S., Hussain, A., Arif, S., Shaheen, R., Sultana, I. Evaluation of vitamin B₁₂ deficiency in various clinical conditions. *Pak. J. Biochem. Mol. Biol.* 2010; 43(2): 45-49
- 5. Pacholok., S.M. (2013). Vitamin B₁₂ Deficiency: Serious Consequences. Pharma Times, Vol 5: 1-12
- 6. Allen., L.H.(2009). How commonis vitamin B₁₂ deficiency? Am. J. Clin. Nutr. 89,693S–696S.
- Herbert., V, Das., K. (1994). Vitamin B₁₂ in Modern Nutrition in Health and Disease. 8th ed. Baltimore, MD: Williams & Wilkins
- 8. Zittoun., J, Zittoun., R. (1999) Modern clinical testing strategies in cobalamin and folate deficiency. *Sem Hematol.* 36:35-46.
- 9. Antony, A.C. (2000). Megaloblastic anemias. In: Hoffman R, et al. *Hematology: Basic Principles and Practice*. 3rd ed. Philadelphia, PA: Churchill Livingstone.
- Center for Disease Control and Prevention. (2009) "Vitamin B₁₂ deficiencies". 1600 Clifton Road, MS E-87, Atlanta, GA 30333, USA. Website, updated June 29th 2009.
- Damasceno, A., França, M.C Jr, Nucci, A. (2008). Chronic acquired sensory neuron diseases. Eur J Neurol. 15(12):1400-5.
- Majumder.,S., Soriano.,J., Louie-Cruz., A., and Dasanu., C.A.(2013).Vitamin B₁₂ deficiency in patients under going bariatric surgery: preventive strategies and key recommendations. *Surg. Obes. Relat. Dis.* 9,1013–1019. Carmel R. Current concepts in cobalamin deficiency. Annu Rev Med. 2000; 51:357-375.
- Kwon, Y., Kim., H.J., Lo-Menzo., E., Park., S., Szomstein., S., and Rosenthal., R. J.(2014). Anemia, iron and vitamin B₁₂ deficiencies after sleeve gastrectomy compared to Roux-en-Y gastric bypass: a metaanalysis. Surg. Obes. Relat. Dis. 10,589–597
- 14. Stabler., S.P. (2012). "Vitamin B₁₂,"in *Present Knowledge in Nutrition*, eds J.W. Erdman, I. A. Macdonald, and S. H. Zeisel (Oxford, UK: Wiley-Blackwell), 343–358.
- 15. Wheeler., S.(2008). Assessment and interpretation of micronutrient status during pregnancy. *Proc. Nutr. Soc.* 67,437–450.
- 16. Sarafoglou., K., Rodgers., J., Hietala. ,A., Matern. ,D., and Bentler., K. (2011). Expanded new born screening for detection of vitamin B₁₂ deficiency. *JAMA* 305: 1198–1200.
- 17. Baik, H RR. (1999). Vitamin B_{12} deficiency in the elderly. (19):357-377.
- 18. Institute of Medicine (IOM). (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B₁₂, pantothenic acid, biotin and choline. Washington, D.C.: National Academy Press.
- 19. Stabler, S.P., Allen, R.H., Savage, D.G., Lindenbaum, J. (1990). Clinical spectrum and diagnosis of cobalamin deficiency. Blood. 1;76(5):871-881.
- 20. Green R, Kinsella LJ. (1995) Current concepts in the diagnosis of cobalamin deficiency. Neurology. 45(8):1435-1440.
- 21. Refsum, H., Ueland, P.M., Nygard, O., Vollset, S.E. (1998). Homocysteine and cardiovascular disease. Annu Rev Med. 49:31-62.
- 22. Monagle, P.T., Tauro, G.P. (1997). Infantile megaloblastosis secondary to maternal vitamin B₁₂ deficiency. Clin Lab Haematol. 19(1):23-25.
- 23. Muhammad R, Fernhoff P, Rasmussen G, Bowman B, Scalon K. (2003) Neurologic impairment in children associated with maternal dietary deficiency of cobalamin--Georgia, 2001. JAMA. 289(8):979-980.
- 24. Turner RJ, Scott-Jupp R, Kohler JA. Infantile megaloblastosis secondary to acquired vitamin B₁₂ deficiency. Pediatr Hematol Oncol. 1999; 16(1):79-81.
- 25. von Schenck, U., Bender-Gotze, C., Koletzko, B. (1997). Persistence of neurological damage induced by dietary vitamin B₁₂ deficiency in infancy. Arch Dis Child. 77(2):137-139.
- Alam., J.M., Hussain, A., Ishrat., S., Mahmood., S.R., Ansari, M.A. (2011). Comparative analysis of Vitamin B₁₂ levels and effects of its deficiency in selected adult population diagnosed with various clinical condition. J. Baqai Med Univ., 14 (2): 3-8.

- 27. Carmel., R.(2012).Sub-clinical cobalamin deficiency. Curr. Opin. Gastroenterol. 28, 151-158.
- 28. Carmel., R. (2013). Diagnosis and management of clinical and subclinical cobalamin deficiencies: why controversies persist in the age of sensitive metabolic testing. *Biochimie* 95,1047–1055
- Mills, J.L., Von Kohorn, I., Conley, M.R, Zeller, J.A, Cox, C., Williamson RE, Dufour D.R. (2003) Low vitamin B₁₂ concentrations in patients without anemia: the effect of folic acid fortification of grain. Am J Clin Nutr. 77(6):1474-1477.
- 30. Carmel R. (1988) Pernicious anemia. The expected findings of very low serum cobalamin levels, anemia, and macrocytosis are often lacking. Arch Intern Med. 148(8):1712-1714.
- Healton, E.B., Savage, D.G., Brust, J.C., Garrett, T.J., Lindenbaum, J. (1991) Neurologic aspects of cobalamin deficiency. Medicine (Baltimore). 70(4):229-245.
- Lindenbaum, J., Healton, E.B., Savage, D.G., Brust, J.C., Garrett, T.J., Podell, E.R., Marcell, P.D., Stabler, S.P., Allen, R.H. (1995) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. Nutrition. 11(2): 180-182.
- Loikas S, Koskinen P, Irjala K, Lopponen M, Isoaho R, Kivela SL, Pelliniemi TT (2007). Vitamin B₁₂ deficiency in the aged: a population-based study. Age Ageing 36 (2): 177-83.
- Remacha., A. F., Sarda., M.P., Canals., C., Queralto., J.M., Zapico., E., Remacha., J., et al. (2013). Combined cobalamin and iron deficiency anemia: a diagnostic approach using a model based on age and homocysteine assessment. *Ann. Hematol.* 92,527–531
- 35. Green., R.(2012). Anemias beyond B₁₂ and iron deficiency: the buzz about other B's, elementary, and nonelementary problems. *Hematol. Am. Soc. Hematol. Educ. Prog.* 2012: 492–498.
- Refsum, H., Yajnik, C.S., Gadkari, M., Schneede, J., Vollset, S.E., Orning, L., etal. (2001). Hyperhomocysteinemia and elevated methyl malonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. *Am. J. Clin. Nutr.* 74,233–241.
- Schulz, R. J. (2007). Homocysteine as a biomarker for cognitive dysfunction in the elderly. *Curr Opin Clin* Nutr Metab Care. 10:718-723.
- Lichtenstein AH, Appel LJ, Brands, M., Carnethon, M., Daniels, S., Franch, H.A, Franklin, B., Kris-Etherton, P., Harris, W.S., Howard, B., Karanja, N., Lefevre, M., Rudel, L., Sacks, F., Van Horn, L., Winston, M., Wylie-Rosett, J. (2006) American Heart Association Nutrition Committee. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. *Circulation*. 2006; 114:82-96.
- Miles., L. M., Mills., K., Clarke., R., and Dangour., A.D. (2015). Is there an association of vitamin B₁₂ status with neurological function in older people? Asystematic review. *Br .J. Nutr.* 114,503–508.
- Alam., J.M., Mahmood, S.R., Hussain, A., Adam, N.A., Arif S., Ahmed A., Asghar S.S., Sultana., I. (2008). Evaluation of Vitamin B₁₂ and Folic acid deficiencies in selected middle-aged and elderly male and female patients. J.Baqai Med.Univ., 3-8
- Stabler, S.P, Allen, R.H. (2004) Megoblastic anemias. In: Goldman, editor. Cecil Textbook of Medicine. 22nd ed: W. B. Saunders Company-pp1050-1057
- 42. Finkelstein, J.D., and Martin., J.J. (1984). Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. *J. Biol. Chem.* 259, 9508–9513.
- Abdollahi, Z., Elmadfa, I., Djazayeri, A., Sadeghian, S., Freisling, H., Mazandarani, F.S., Mohamed, K. (2008) . Folate, vitamin B₁₂ and homocysteine status in women of childbearing age: baseline data of folic acid wheat flour fortification in Iran. Ann Nutr Metab. 53(2):143-50.
- Huemer, M., Kozich, V., Rinaldo, P., Baumgartner, M.R., Merinero, B., Pasquini, E. (2015). New born screening for homocystinurias and methylation disorders: systematic review and proposed guidelines. J. Inherit. Metab. Dis. 38, 1007–1019.

- 45. Lim, H.S., Heo, Y.R. Plasma total homocysteine, folate, and vitamin B₁₂ status in Korean adults. *J Nutr Sci Vitaminol* (Tokyo). 2002; 48(4):290-7., George JN, Hastings C. Severe vitamin B-12 deficiency in a child mimicking thrombotic thrombocytopenic purpura. Pediatr Blood Cancer. 2009; 52(3):420-2.
- Dimond ARasmussen SA, Fernhoff PM, Scanlon KS. Vitamin B₁₂ deficiency in children and adolescents. J Pediatr. 2001;138(1):10-17.
- García Jiménez. M.C., Baldellou Vázquez, A., Calvo Martín. M.T., Pérez-Lungmus, G., López Pisón, J. (2008). [Hereditary juvenile cobalamin deficiency due to mutations in GIF gene]. An Pediatr (Barc). 69(1):56-8.
- Groenen, P.M., van Rooij, I.A., Peer, P.G., Gooskens, R.H., Zielhuis, G.A., Steegers-Theunissen, R.P. (2004) Marginal maternal vitamin B₁₂ status increases the risk of offspring with spina bifida. Am J Obstet Gynecol. 2004; 191:11-17.

