Chemistry Research Journal, 2017, 2(3):108-111

Available online <u>www.chemrj.org</u>

Research Article

ISSN: 2455-8990 CODEN(USA): CRJHA5

Estimation of the gas phase formation enthalpies for superheavy-elements (112, 113, 114, 117, 118, 119 and 120) and some of their +1 and -1 ions

Robson Fernandes de Farias

Universidade Federal do Rio Grande do Norte, Cx. Postal 1664, 59078-970 Natal-RN, Brazil

Abstract In the present work, the gaseous phase formation enthalpies for the elements (and their +1 cations) from groups 1,2, 12, 13, 16, 17 and 18 of the periodic table taken from literature [2,3], the electron integrated heat capacity [4], as well as previously calculated IE and EA [5] are employed to estimate the gas phase formation enthalpies for the superheavy-elements 112 (Copernicium, Cn), 113 (Nionium, Nh), 114 (Flerovium, Fl), 117 (Tennessine, Ts), 118 (Oganesson, Og), 119 and 120 and for some of their +1 and -1 ions. The obtained formation enthalpies (kJmol⁻¹) for the elements are: 112 (17.955); 113 (110.360), 114 (70.716); 117 (80.138); 118 (0); 119 (53.688) and 120 (180.400).

Keywords Superheavy-elements; Formation enthalpy; Electron formation enthalpy

Introduction

As has been shown for tennessine [1] despite their simplicity (or may be, because it) extrapolation, combined with some empirical equations, can be a powerful and trustable way to estimate the physical properties of a superheavy-element.

In the present work, literature data [2,3], that is, the gaseous phase formation enthalpies for the elements (and their +1 cations) from groups 1,2, 12, 13, 16, 17 and 18 of the periodic table, the electron integrated heat capacity [4], as well as previously calculated IE and EA [5] are employed to estimate the gas phase formation enthalpies for the superheavy-elements 112 (Copernicium, Cn), 113 (Nionium, Nh), 114 (Flerovium, Fl), 117 (Tennessine, Ts), 118 (Oganesson, Og), 119 and 120 and for some of their +1 and -1 ions.

Methodology, Results and Discussion

In a first moment, the gas phase ΔH_f^{θ} for the elements and their respective +1 cations were obtained only by extrapolation of literature [2,3] data. In all cases, ΔH_f^{θ} and $\Delta H_{f(+1)}^{\theta}$ were plotted as a function of the atomic number (Z). Since for the heavy and superheavy elements, relativistic effects matters [6], in each curve the first element of the group was excluded (except for group 12), in order to obtain a better correlation coefficient. Linear curves, with correlation coefficients from 0.983 to 0.999 were obtained. From the obtained linear equations, the ΔH_f^{θ} and $\Delta H_{f(+1)}^{\theta}$ for the superheavy-elements were estimated.

As a secondary approach, the $\Delta H_{f\,(+1)}^{\theta}$ values were estimated by using the previously calculated (by scalar relativistic spin-free Hartree-Fock method) first ionizations energies for the superheavy-elements [5], the electron integrated heat capacity (H_T - H_0 ; named here $as\Delta_f H^{\theta}_{(e-)}$) was taken as 6.1973kJmol⁻¹ [4] and the estimated (by extrapolation) ΔH_f^{θ} for the neutral elements: $\Delta H_{f\,(+)}^{\theta} = IE -\Delta_f H^{\theta}_{(e-)} + \Delta H_f^{\theta}_{(neutral ement)}$. All obtained results are summarized in Table 1.

Elemet/+1 or -1 ion	ΔH ^θ /kJmol ⁻¹	$\Delta H_{f}^{\theta}(+)/kJmol^{-1}$	$\Delta H_{f(-)}^{\theta} k Jmol^{-1}$
Cn	17.955 ^a		
Cn ⁺		1163.158 ^a	
		1132 ^b	
Nh	110.360 ^a		
\mathbf{Nh}^+		715.480^{a}	
Nh			171.436 ^b
Fl	70.716 ^a		
\mathbf{Fl}^+		739.992 ^a	
		617 ^b	
Ts	80.138 ^a		
Ts^+		665.710 ^a	
Ts			-115.928 ^b
Og	0^{c}		
Og^+		781.896 ^a	
		978 ^b	
119	53.688 ^a		
119 ⁺		359.185 ^a	
119-			53.683 ^b
120	180.400^{a}		
120^{+}		660.140 ^a	
		660 ^b	

Table	1: G	as pha	ise f	ormation	entha	lpie	s for	super	heavy	-elem	ents	and	some	of	thei	r +1	and	-1	ions
-------	------	--------	-------	----------	-------	------	-------	-------	-------	-------	------	-----	------	----	------	------	-----	----	------

^aObtained by extrapolation of literature [2,3] data. ^bObtained by using the previously calculated (by scalar relativistic spin-free Hartree-Fock method) first ionizations energies or the first electron affinities for the superheavy-elements [5], the formation enthalpy of the electron, $\Delta_f H^{\theta}(e^{-}) = -6.18 \text{ kJmol}^{-1}$ [4] and the estimated (by extrapolation) ΔH_f^{θ} for the neutral elements. ^cSince it is a noble gas, existing in its most stale form at standard conditions as a monoatomic specie, its formation enthalpy, as of any other noble gas, is zero.

As can be verified, the two approach employed to estimate the $\Delta H_{f(+)}^{\theta}$ values provides results in good agreement, specially for Cn⁺ and 120⁺.

For some elements (113, 117 and 119), for which the electron affinities were previously calculated (by scalar relativistic spin-free Hartree-Fock method) [5], the formation enthalpy for the anions $\Delta H_{f}^{\theta}_{(-)}$ were calculated by using the equation: $\Delta H_{f}^{\theta}_{(-)} = EA + \Delta_{f} H_{f(e-)}^{\theta} + \Delta H_{f(neutral ement)}^{\theta}$. The results are also summarized in Table 1.

When the formation enthalpies are plotted as a function of the calculated Mullikan charges (relativistic Dirac, HF level) a straight line, with r = 0.999 is obtained for the elements 113, 117, 118 and 119, as shown in Figure 1.

When the formation enthalpies are plotted as a function of the calculated Mullikan charges (scalar relativistic spinfree Hartree-Fock method) for all considered elements, the curve shown in Figure 2 is obtained, in which a periodic trend linking both parameters can be verified.

A clear periodic trend can also be observed when the estimated $\Delta H_{f}^{\theta}_{(+)}$ values are plotted as a function of the atomic number, as shown in Figure 3.

Figure 1: Gas phase formation enthalpy as a Mullikan charge (relativistic Dirac, HF level)[5] function for elements 113, 117, 118 and 119.

Figure 2: Gas phase formation enthalpies as a function of Mullikan charges (scalar relativistic spin-free Hartree-Fock method) [5] for all considered elements

Figure 3: $\Delta H_{f(+)}^{\theta}$ values as a function of the atomic number (Z), for all considered elements

References

- 1. R.F. de Farias, Chem. Phys. Lett., 667 (2017) 1-3.
- D.D. Wagman, W.H. Evans; V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey; K.L. Churney; R.L. Nuttall, The NBS tables of chemical thermodynamic properties. *J. Chem. Ref. Data*, 11 (1982)(supplement n° 2).
- 3. CRC Handbook of Chemistry and Physics 96th ed., Taylor and Francis, Boca Raton, 2016.
- 4. J.E. Bartmess, J. Phys. Chem., 98 (1994) 6420-6224.
- 5. C. Thierfelder, T. Schwerdtfeger, A. Koers, A. Borchevsky, B. Fricke, Phys. Rev. A 80, 022501 2009.
- 6. B.A. Hess, Relativistic effects in heavy-element chemistry and physics, Wiley, Chichester, 2003.

